View Javadoc
1   package org.djunits.value.vdouble.scalar;
2   
3   import java.util.regex.Matcher;
4   
5   import org.djunits.unit.DensityUnit;
6   import org.djunits.unit.DimensionlessUnit;
7   import org.djunits.unit.MassUnit;
8   import org.djunits.unit.Unit;
9   
10  /**
11   * Easy access methods for the Density DoubleScalar, which is relative by definition. Instead of:
12   * 
13   * <pre>
14   * DoubleScalar.Rel&lt;DensityUnit&gt; value = new DoubleScalar.Rel&lt;DensityUnit&gt;(100.0, DensityUnit.SI);
15   * </pre>
16   * 
17   * we can now write:
18   * 
19   * <pre>
20   * Density value = new Density(100.0, DensityUnit.SI);
21   * </pre>
22   * 
23   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
24   * used are compatible.
25   * <p>
26   * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
27   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
28   * <p>
29   * $LastChangedDate: 2019-03-03 00:53:50 +0100 (Sun, 03 Mar 2019) $, @version $Revision: 349 $, by $Author: averbraeck $,
30   * initial version Sep 5, 2015 <br>
31   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
32   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
33   */
34  public class Density extends AbstractDoubleScalarRel<DensityUnit, Density>
35  {
36      /** */
37      private static final long serialVersionUID = 20150905L;
38  
39      /** constant with value zero. */
40      public static final Density ZERO = new Density(0.0, DensityUnit.SI);
41  
42      /** constant with value NaN. */
43      @SuppressWarnings("checkstyle:constantname")
44      public static final Density NaN = new Density(Double.NaN, DensityUnit.SI);
45  
46      /** constant with value POSITIVE_INFINITY. */
47      public static final Density POSITIVE_INFINITY = new Density(Double.POSITIVE_INFINITY, DensityUnit.SI);
48  
49      /** constant with value NEGATIVE_INFINITY. */
50      public static final Density NEGATIVE_INFINITY = new Density(Double.NEGATIVE_INFINITY, DensityUnit.SI);
51  
52      /** constant with value MAX_VALUE. */
53      public static final Density POS_MAXVALUE = new Density(Double.MAX_VALUE, DensityUnit.SI);
54  
55      /** constant with value -MAX_VALUE. */
56      public static final Density NEG_MAXVALUE = new Density(-Double.MAX_VALUE, DensityUnit.SI);
57  
58      /**
59       * Construct Density scalar.
60       * @param value double value
61       * @param unit unit for the double value
62       */
63      public Density(final double value, final DensityUnit unit)
64      {
65          super(value, unit);
66      }
67  
68      /**
69       * Construct Density scalar.
70       * @param value Scalar from which to construct this instance
71       */
72      public Density(final Density value)
73      {
74          super(value);
75      }
76  
77      /** {@inheritDoc} */
78      @Override
79      public final Density instantiateRel(final double value, final DensityUnit unit)
80      {
81          return new Density(value, unit);
82      }
83  
84      /**
85       * Construct Density scalar.
86       * @param value double value in SI units
87       * @return the new scalar with the SI value
88       */
89      public static final Density createSI(final double value)
90      {
91          return new Density(value, DensityUnit.SI);
92      }
93  
94      /**
95       * Interpolate between two values.
96       * @param zero the low value
97       * @param one the high value
98       * @param ratio the ratio between 0 and 1, inclusive
99       * @return a Scalar at the ratio between
100      */
101     public static Density interpolate(final Density zero, final Density one, final double ratio)
102     {
103         return new Density(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
104     }
105 
106     /**
107      * Return the maximum value of two relative scalars.
108      * @param r1 the first scalar
109      * @param r2 the second scalar
110      * @return the maximum value of two relative scalars
111      */
112     public static Density max(final Density r1, final Density r2)
113     {
114         return (r1.gt(r2)) ? r1 : r2;
115     }
116 
117     /**
118      * Return the maximum value of more than two relative scalars.
119      * @param r1 the first scalar
120      * @param r2 the second scalar
121      * @param rn the other scalars
122      * @return the maximum value of more than two relative scalars
123      */
124     public static Density max(final Density r1, final Density r2, final Density... rn)
125     {
126         Density maxr = (r1.gt(r2)) ? r1 : r2;
127         for (Density r : rn)
128         {
129             if (r.gt(maxr))
130             {
131                 maxr = r;
132             }
133         }
134         return maxr;
135     }
136 
137     /**
138      * Return the minimum value of two relative scalars.
139      * @param r1 the first scalar
140      * @param r2 the second scalar
141      * @return the minimum value of two relative scalars
142      */
143     public static Density min(final Density r1, final Density r2)
144     {
145         return (r1.lt(r2)) ? r1 : r2;
146     }
147 
148     /**
149      * Return the minimum value of more than two relative scalars.
150      * @param r1 the first scalar
151      * @param r2 the second scalar
152      * @param rn the other scalars
153      * @return the minimum value of more than two relative scalars
154      */
155     public static Density min(final Density r1, final Density r2, final Density... rn)
156     {
157         Density minr = (r1.lt(r2)) ? r1 : r2;
158         for (Density r : rn)
159         {
160             if (r.lt(minr))
161             {
162                 minr = r;
163             }
164         }
165         return minr;
166     }
167 
168     /**
169      * Returns a Density representation of a textual representation of a value with a unit. The String representation that can
170      * be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but not
171      * necessary, between the value and the unit.
172      * @param text String; the textual representation to parse into a Density
173      * @return the String representation of the value in its unit, followed by the official abbreviation of the unit
174      * @throws IllegalArgumentException when the text cannot be parsed
175      */
176     public static Density valueOf(final String text) throws IllegalArgumentException
177     {
178         if (text == null || text.length() == 0)
179         {
180             throw new IllegalArgumentException("Error parsing Density -- null or empty argument");
181         }
182         Matcher matcher = NUMBER_PATTERN.matcher(text);
183         if (matcher.find())
184         {
185             int index = matcher.end();
186             try
187             {
188                 String unitString = text.substring(index).trim();
189                 String valueString = text.substring(0, index).trim();
190                 for (DensityUnit unit : Unit.getUnits(DensityUnit.class))
191                 {
192                     if (unit.getDefaultLocaleTextualRepresentations().contains(unitString))
193                     {
194                         double d = Double.parseDouble(valueString);
195                         return new Density(d, unit);
196                     }
197                 }
198             }
199             catch (Exception exception)
200             {
201                 throw new IllegalArgumentException("Error parsing Density from " + text, exception);
202             }
203         }
204         throw new IllegalArgumentException("Error parsing Density from " + text);
205     }
206 
207     /**
208      * Calculate the division of Density and Density, which results in a Dimensionless scalar.
209      * @param v Density scalar
210      * @return Dimensionless scalar as a division of Density and Density
211      */
212     public final Dimensionless divideBy(final Density v)
213     {
214         return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
215     }
216 
217     /**
218      * Calculate the multiplication of Density and Volume, which results in a Mass scalar.
219      * @param v Density scalar
220      * @return Mass scalar as a multiplication of Density and Volume
221      */
222     public final Mass multiplyBy(final Volume v)
223     {
224         return new Mass(this.si * v.si, MassUnit.SI);
225     }
226 
227 }