1 package org.djunits.value.vdouble.scalar;
2
3 import java.util.regex.Matcher;
4
5 import org.djunits.unit.AccelerationUnit;
6 import org.djunits.unit.AreaUnit;
7 import org.djunits.unit.DimensionlessUnit;
8 import org.djunits.unit.EnergyUnit;
9 import org.djunits.unit.ForceUnit;
10 import org.djunits.unit.LinearDensityUnit;
11 import org.djunits.unit.MassUnit;
12 import org.djunits.unit.PowerUnit;
13 import org.djunits.unit.PressureUnit;
14 import org.djunits.unit.Unit;
15
16 /**
17 * Easy access methods for the Force DoubleScalar, which is relative by definition. Instead of:
18 *
19 * <pre>
20 * DoubleScalar.Rel<ForceUnit> value = new DoubleScalar.Rel<ForceUnit>(100.0, ForceUnit.SI);
21 * </pre>
22 *
23 * we can now write:
24 *
25 * <pre>
26 * Force value = new Force(100.0, ForceUnit.SI);
27 * </pre>
28 *
29 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
30 * used are compatible.
31 * <p>
32 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
33 * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
34 * <p>
35 * $LastChangedDate: 2019-03-03 00:53:50 +0100 (Sun, 03 Mar 2019) $, @version $Revision: 349 $, by $Author: averbraeck $,
36 * initial version Sep 5, 2015 <br>
37 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
38 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
39 */
40 public class Force extends AbstractDoubleScalarRel<ForceUnit, Force>
41 {
42 /** */
43 private static final long serialVersionUID = 20150905L;
44
45 /** constant with value zero. */
46 public static final Force ZERO = new Force(0.0, ForceUnit.SI);
47
48 /** constant with value NaN. */
49 @SuppressWarnings("checkstyle:constantname")
50 public static final Force NaN = new Force(Double.NaN, ForceUnit.SI);
51
52 /** constant with value POSITIVE_INFINITY. */
53 public static final Force POSITIVE_INFINITY = new Force(Double.POSITIVE_INFINITY, ForceUnit.SI);
54
55 /** constant with value NEGATIVE_INFINITY. */
56 public static final Force NEGATIVE_INFINITY = new Force(Double.NEGATIVE_INFINITY, ForceUnit.SI);
57
58 /** constant with value MAX_VALUE. */
59 public static final Force POS_MAXVALUE = new Force(Double.MAX_VALUE, ForceUnit.SI);
60
61 /** constant with value -MAX_VALUE. */
62 public static final Force NEG_MAXVALUE = new Force(-Double.MAX_VALUE, ForceUnit.SI);
63
64 /**
65 * Construct Force scalar.
66 * @param value double value
67 * @param unit unit for the double value
68 */
69 public Force(final double value, final ForceUnit unit)
70 {
71 super(value, unit);
72 }
73
74 /**
75 * Construct Force scalar.
76 * @param value Scalar from which to construct this instance
77 */
78 public Force(final Force value)
79 {
80 super(value);
81 }
82
83 /** {@inheritDoc} */
84 @Override
85 public final Force instantiateRel(final double value, final ForceUnit unit)
86 {
87 return new Force(value, unit);
88 }
89
90 /**
91 * Construct Force scalar.
92 * @param value double value in SI units
93 * @return the new scalar with the SI value
94 */
95 public static final Force createSI(final double value)
96 {
97 return new Force(value, ForceUnit.SI);
98 }
99
100 /**
101 * Interpolate between two values.
102 * @param zero the low value
103 * @param one the high value
104 * @param ratio the ratio between 0 and 1, inclusive
105 * @return a Scalar at the ratio between
106 */
107 public static Force interpolate(final Force zero, final Force one, final double ratio)
108 {
109 return new Force(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
110 }
111
112 /**
113 * Return the maximum value of two relative scalars.
114 * @param r1 the first scalar
115 * @param r2 the second scalar
116 * @return the maximum value of two relative scalars
117 */
118 public static Force max(final Force r1, final Force r2)
119 {
120 return (r1.gt(r2)) ? r1 : r2;
121 }
122
123 /**
124 * Return the maximum value of more than two relative scalars.
125 * @param r1 the first scalar
126 * @param r2 the second scalar
127 * @param rn the other scalars
128 * @return the maximum value of more than two relative scalars
129 */
130 public static Force max(final Force r1, final Force r2, final Force... rn)
131 {
132 Force maxr = (r1.gt(r2)) ? r1 : r2;
133 for (Force r : rn)
134 {
135 if (r.gt(maxr))
136 {
137 maxr = r;
138 }
139 }
140 return maxr;
141 }
142
143 /**
144 * Return the minimum value of two relative scalars.
145 * @param r1 the first scalar
146 * @param r2 the second scalar
147 * @return the minimum value of two relative scalars
148 */
149 public static Force min(final Force r1, final Force r2)
150 {
151 return (r1.lt(r2)) ? r1 : r2;
152 }
153
154 /**
155 * Return the minimum value of more than two relative scalars.
156 * @param r1 the first scalar
157 * @param r2 the second scalar
158 * @param rn the other scalars
159 * @return the minimum value of more than two relative scalars
160 */
161 public static Force min(final Force r1, final Force r2, final Force... rn)
162 {
163 Force minr = (r1.lt(r2)) ? r1 : r2;
164 for (Force r : rn)
165 {
166 if (r.lt(minr))
167 {
168 minr = r;
169 }
170 }
171 return minr;
172 }
173
174 /**
175 * Returns a Force representation of a textual representation of a value with a unit. The String representation that can be
176 * parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but not
177 * necessary, between the value and the unit.
178 * @param text String; the textual representation to parse into a Force
179 * @return the String representation of the value in its unit, followed by the official abbreviation of the unit
180 * @throws IllegalArgumentException when the text cannot be parsed
181 */
182 public static Force valueOf(final String text) throws IllegalArgumentException
183 {
184 if (text == null || text.length() == 0)
185 {
186 throw new IllegalArgumentException("Error parsing Force -- null or empty argument");
187 }
188 Matcher matcher = NUMBER_PATTERN.matcher(text);
189 if (matcher.find())
190 {
191 int index = matcher.end();
192 try
193 {
194 String unitString = text.substring(index).trim();
195 String valueString = text.substring(0, index).trim();
196 for (ForceUnit unit : Unit.getUnits(ForceUnit.class))
197 {
198 if (unit.getDefaultLocaleTextualRepresentations().contains(unitString))
199 {
200 double d = Double.parseDouble(valueString);
201 return new Force(d, unit);
202 }
203 }
204 }
205 catch (Exception exception)
206 {
207 throw new IllegalArgumentException("Error parsing Force from " + text, exception);
208 }
209 }
210 throw new IllegalArgumentException("Error parsing Force from " + text);
211 }
212
213 /**
214 * Calculate the division of Force and Force, which results in a Dimensionless scalar.
215 * @param v Force scalar
216 * @return Dimensionless scalar as a division of Force and Force
217 */
218 public final Dimensionless divideBy(final Force v)
219 {
220 return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
221 }
222
223 /**
224 * Calculate the multiplication of Force and Length, which results in a Energy scalar.
225 * @param v Force scalar
226 * @return Energy scalar as a multiplication of Force and Length
227 */
228 public final Energy multiplyBy(final Length v)
229 {
230 return new Energy(this.si * v.si, EnergyUnit.SI);
231 }
232
233 /**
234 * Calculate the division of Force and LinearDensity, which results in a Energy scalar.
235 * @param v Force scalar
236 * @return Energy scalar as a division of Force and LinearDensity
237 */
238 public final Energy divideBy(final LinearDensity v)
239 {
240 return new Energy(this.si / v.si, EnergyUnit.SI);
241 }
242
243 /**
244 * Calculate the division of Force and Energy, which results in a LinearDensity scalar.
245 * @param v Force scalar
246 * @return LinearDensity scalar as a division of Force and Energy
247 */
248 public final LinearDensity divideBy(final Energy v)
249 {
250 return new LinearDensity(this.si / v.si, LinearDensityUnit.SI);
251 }
252
253 /**
254 * Calculate the multiplication of Force and Speed, which results in a Power scalar.
255 * @param v Force scalar
256 * @return Power scalar as a multiplication of Force and Speed
257 */
258 public final Power multiplyBy(final Speed v)
259 {
260 return new Power(this.si * v.si, PowerUnit.SI);
261 }
262
263 /**
264 * Calculate the division of Force and Mass, which results in a Acceleration scalar.
265 * @param v Force scalar
266 * @return Acceleration scalar as a division of Force and Mass
267 */
268 public final Acceleration divideBy(final Mass v)
269 {
270 return new Acceleration(this.si / v.si, AccelerationUnit.SI);
271 }
272
273 /**
274 * Calculate the division of Force and Acceleration, which results in a Mass scalar.
275 * @param v Force scalar
276 * @return Mass scalar as a division of Force and Acceleration
277 */
278 public final Mass divideBy(final Acceleration v)
279 {
280 return new Mass(this.si / v.si, MassUnit.SI);
281 }
282
283 /**
284 * Calculate the division of Force and Area, which results in a Pressure scalar.
285 * @param v Force scalar
286 * @return Pressure scalar as a division of Force and Area
287 */
288 public final Pressure divideBy(final Area v)
289 {
290 return new Pressure(this.si / v.si, PressureUnit.SI);
291 }
292
293 /**
294 * Calculate the division of Force and Pressure, which results in a Area scalar.
295 * @param v Force scalar
296 * @return Area scalar as a division of Force and Pressure
297 */
298 public final Area divideBy(final Pressure v)
299 {
300 return new Area(this.si / v.si, AreaUnit.SI);
301 }
302
303 }