1 package org.djunits.value.vdouble.scalar;
2
3 import java.util.regex.Matcher;
4
5 import org.djunits.unit.DimensionlessUnit;
6 import org.djunits.unit.ElectricalChargeUnit;
7 import org.djunits.unit.ElectricalCurrentUnit;
8 import org.djunits.unit.ElectricalPotentialUnit;
9 import org.djunits.unit.PowerUnit;
10 import org.djunits.unit.Unit;
11
12 /**
13 * Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition. Instead of:
14 *
15 * <pre>
16 * DoubleScalar.Rel<ElectricalCurrentUnit> value = new DoubleScalar.Rel<ElectricalCurrentUnit>(100.0, ElectricalCurrentUnit.SI);
17 * </pre>
18 *
19 * we can now write:
20 *
21 * <pre>
22 * ElectricalCurrent value = new ElectricalCurrent(100.0, ElectricalCurrentUnit.SI);
23 * </pre>
24 *
25 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
26 * used are compatible.
27 * <p>
28 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
29 * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
30 * <p>
31 * $LastChangedDate: 2019-03-03 00:53:50 +0100 (Sun, 03 Mar 2019) $, @version $Revision: 349 $, by $Author: averbraeck $,
32 * initial version Sep 5, 2015 <br>
33 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
34 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
35 */
36 public class ElectricalCurrent extends AbstractDoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
37 {
38 /** */
39 private static final long serialVersionUID = 20150905L;
40
41 /** constant with value zero. */
42 public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
43
44 /** constant with value NaN. */
45 @SuppressWarnings("checkstyle:constantname")
46 public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
47
48 /** constant with value POSITIVE_INFINITY. */
49 public static final ElectricalCurrent POSITIVE_INFINITY =
50 new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
51
52 /** constant with value NEGATIVE_INFINITY. */
53 public static final ElectricalCurrent NEGATIVE_INFINITY =
54 new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
55
56 /** constant with value MAX_VALUE. */
57 public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
58
59 /** constant with value -MAX_VALUE. */
60 public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
61
62 /**
63 * Construct ElectricalCurrent scalar.
64 * @param value double value
65 * @param unit unit for the double value
66 */
67 public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
68 {
69 super(value, unit);
70 }
71
72 /**
73 * Construct ElectricalCurrent scalar.
74 * @param value Scalar from which to construct this instance
75 */
76 public ElectricalCurrent(final ElectricalCurrent value)
77 {
78 super(value);
79 }
80
81 /** {@inheritDoc} */
82 @Override
83 public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
84 {
85 return new ElectricalCurrent(value, unit);
86 }
87
88 /**
89 * Construct ElectricalCurrent scalar.
90 * @param value double value in SI units
91 * @return the new scalar with the SI value
92 */
93 public static final ElectricalCurrent createSI(final double value)
94 {
95 return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
96 }
97
98 /**
99 * Interpolate between two values.
100 * @param zero the low value
101 * @param one the high value
102 * @param ratio the ratio between 0 and 1, inclusive
103 * @return a Scalar at the ratio between
104 */
105 public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
106 {
107 return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
108 }
109
110 /**
111 * Return the maximum value of two relative scalars.
112 * @param r1 the first scalar
113 * @param r2 the second scalar
114 * @return the maximum value of two relative scalars
115 */
116 public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
117 {
118 return (r1.gt(r2)) ? r1 : r2;
119 }
120
121 /**
122 * Return the maximum value of more than two relative scalars.
123 * @param r1 the first scalar
124 * @param r2 the second scalar
125 * @param rn the other scalars
126 * @return the maximum value of more than two relative scalars
127 */
128 public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
129 {
130 ElectricalCurrent maxr = (r1.gt(r2)) ? r1 : r2;
131 for (ElectricalCurrent r : rn)
132 {
133 if (r.gt(maxr))
134 {
135 maxr = r;
136 }
137 }
138 return maxr;
139 }
140
141 /**
142 * Return the minimum value of two relative scalars.
143 * @param r1 the first scalar
144 * @param r2 the second scalar
145 * @return the minimum value of two relative scalars
146 */
147 public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
148 {
149 return (r1.lt(r2)) ? r1 : r2;
150 }
151
152 /**
153 * Return the minimum value of more than two relative scalars.
154 * @param r1 the first scalar
155 * @param r2 the second scalar
156 * @param rn the other scalars
157 * @return the minimum value of more than two relative scalars
158 */
159 public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
160 {
161 ElectricalCurrent minr = (r1.lt(r2)) ? r1 : r2;
162 for (ElectricalCurrent r : rn)
163 {
164 if (r.lt(minr))
165 {
166 minr = r;
167 }
168 }
169 return minr;
170 }
171
172 /**
173 * Returns a ElectricalCurrent representation of a textual representation of a value with a unit. The String representation
174 * that can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are
175 * allowed, but not necessary, between the value and the unit.
176 * @param text String; the textual representation to parse into a ElectricalCurrent
177 * @return the String representation of the value in its unit, followed by the official abbreviation of the unit
178 * @throws IllegalArgumentException when the text cannot be parsed
179 */
180 public static ElectricalCurrent valueOf(final String text) throws IllegalArgumentException
181 {
182 if (text == null || text.length() == 0)
183 {
184 throw new IllegalArgumentException("Error parsing ElectricalCurrent -- null or empty argument");
185 }
186 Matcher matcher = NUMBER_PATTERN.matcher(text);
187 if (matcher.find())
188 {
189 int index = matcher.end();
190 try
191 {
192 String unitString = text.substring(index).trim();
193 String valueString = text.substring(0, index).trim();
194 for (ElectricalCurrentUnit unit : Unit.getUnits(ElectricalCurrentUnit.class))
195 {
196 if (unit.getDefaultLocaleTextualRepresentations().contains(unitString))
197 {
198 double d = Double.parseDouble(valueString);
199 return new ElectricalCurrent(d, unit);
200 }
201 }
202 }
203 catch (Exception exception)
204 {
205 throw new IllegalArgumentException("Error parsing ElectricalCurrent from " + text, exception);
206 }
207 }
208 throw new IllegalArgumentException("Error parsing ElectricalCurrent from " + text);
209 }
210
211 /**
212 * Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
213 * @param v ElectricalCurrent scalar
214 * @return Dimensionless scalar as a division of ElectricalCurrent and ElectricalCurrent
215 */
216 public final Dimensionless divideBy(final ElectricalCurrent v)
217 {
218 return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
219 }
220
221 /**
222 * Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
223 * @param v ElectricalCurrent scalar
224 * @return Power scalar as a multiplication of ElectricalCurrent and ElectricalPotential
225 */
226 public final Power multiplyBy(final ElectricalPotential v)
227 {
228 return new Power(this.si * v.si, PowerUnit.SI);
229 }
230
231 /**
232 * Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
233 * @param v ElectricalCurrent scalar
234 * @return ElectricalCharge scalar as a multiplication of ElectricalCurrent and Duration
235 */
236 public final ElectricalCharge multiplyBy(final Duration v)
237 {
238 return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
239 }
240
241 /**
242 * Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
243 * scalar.
244 * @param v ElectricalCurrent scalar
245 * @return ElectricalPotential scalar as a multiplication of ElectricalCurrent and ElectricalResistance
246 */
247 public final ElectricalPotential multiplyBy(final ElectricalResistance v)
248 {
249 return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
250 }
251
252 }