View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.FlowMassUnit;
5   import org.djunits.unit.ForceUnit;
6   import org.djunits.unit.FrequencyUnit;
7   import org.djunits.unit.MassUnit;
8   
9   /**
10   * Easy access methods for the FlowMass FloatScalar, which is relative by definition. An example is Speed. Instead of:
11   * 
12   * <pre>
13   * FloatScalar.Rel&lt;FlowMassUnit&gt; value = new FloatScalar.Rel&lt;FlowMassUnit&gt;(100.0, FlowMassUnit.SI);
14   * </pre>
15   * 
16   * we can now write:
17   * 
18   * <pre>
19   * FloatFlowMass value = new FloatFlowMass(100.0, FlowMassUnit.SI);
20   * </pre>
21   * 
22   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
23   * used are compatible.
24   * <p>
25   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
26   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
27   * <p>
28   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
29   * initial version Sep 5, 2015 <br>
30   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
31   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
32   */
33  public class FloatFlowMass extends AbstractFloatScalarRel<FlowMassUnit, FloatFlowMass>
34  {
35      /** */
36      private static final long serialVersionUID = 20150901L;
37  
38      /** constant with value zero. */
39      public static final FloatFlowMass ZERO = new FloatFlowMass(0.0f, FlowMassUnit.SI);
40  
41      /** constant with value NaN. */
42      @SuppressWarnings("checkstyle:constantname")
43      public static final FloatFlowMass NaN = new FloatFlowMass(Float.NaN, FlowMassUnit.SI);
44  
45      /** constant with value POSITIVE_INFINITY. */
46      public static final FloatFlowMass POSITIVE_INFINITY = new FloatFlowMass(Float.POSITIVE_INFINITY, FlowMassUnit.SI);
47  
48      /** constant with value NEGATIVE_INFINITY. */
49      public static final FloatFlowMass NEGATIVE_INFINITY = new FloatFlowMass(Float.NEGATIVE_INFINITY, FlowMassUnit.SI);
50  
51      /** constant with value MAX_VALUE. */
52      public static final FloatFlowMass POS_MAXVALUE = new FloatFlowMass(Float.MAX_VALUE, FlowMassUnit.SI);
53  
54      /** constant with value -MAX_VALUE. */
55      public static final FloatFlowMass NEG_MAXVALUE = new FloatFlowMass(-Float.MAX_VALUE, FlowMassUnit.SI);
56  
57      /**
58       * Construct FloatFlowMass scalar.
59       * @param value float value
60       * @param unit unit for the float value
61       */
62      public FloatFlowMass(final float value, final FlowMassUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct FloatFlowMass scalar.
69       * @param value Scalar from which to construct this instance
70       */
71      public FloatFlowMass(final FloatFlowMass value)
72      {
73          super(value);
74      }
75  
76      /**
77       * Construct FloatFlowMass scalar using a double value.
78       * @param value double value
79       * @param unit unit for the resulting float value
80       */
81      public FloatFlowMass(final double value, final FlowMassUnit unit)
82      {
83          super((float) value, unit);
84      }
85  
86      /** {@inheritDoc} */
87      @Override
88      public final FloatFlowMass instantiateRel(final float value, final FlowMassUnit unit)
89      {
90          return new FloatFlowMass(value, unit);
91      }
92  
93      /**
94       * Construct FloatFlowMass scalar.
95       * @param value float value in SI units
96       * @return the new scalar with the SI value
97       */
98      public static final FloatFlowMass createSI(final float value)
99      {
100         return new FloatFlowMass(value, FlowMassUnit.SI);
101     }
102 
103     /**
104      * Interpolate between two values.
105      * @param zero the low value
106      * @param one the high value
107      * @param ratio the ratio between 0 and 1, inclusive
108      * @return a Scalar at the ratio between
109      */
110     public static FloatFlowMass interpolate(final FloatFlowMass zero, final FloatFlowMass one, final float ratio)
111     {
112         return new FloatFlowMass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
113     }
114 
115     /**
116      * Return the maximum value of two relative scalars.
117      * @param r1 the first scalar
118      * @param r2 the second scalar
119      * @return the maximum value of two relative scalars
120      */
121     public static FloatFlowMass max(final FloatFlowMass r1, final FloatFlowMass r2)
122     {
123         return (r1.gt(r2)) ? r1 : r2;
124     }
125 
126     /**
127      * Return the maximum value of more than two relative scalars.
128      * @param r1 the first scalar
129      * @param r2 the second scalar
130      * @param rn the other scalars
131      * @return the maximum value of more than two relative scalars
132      */
133     public static FloatFlowMass max(final FloatFlowMass r1, final FloatFlowMass r2, final FloatFlowMass... rn)
134     {
135         FloatFlowMass maxr = (r1.gt(r2)) ? r1 : r2;
136         for (FloatFlowMass r : rn)
137         {
138             if (r.gt(maxr))
139             {
140                 maxr = r;
141             }
142         }
143         return maxr;
144     }
145 
146     /**
147      * Return the minimum value of two relative scalars.
148      * @param r1 the first scalar
149      * @param r2 the second scalar
150      * @return the minimum value of two relative scalars
151      */
152     public static FloatFlowMass min(final FloatFlowMass r1, final FloatFlowMass r2)
153     {
154         return (r1.lt(r2)) ? r1 : r2;
155     }
156 
157     /**
158      * Return the minimum value of more than two relative scalars.
159      * @param r1 the first scalar
160      * @param r2 the second scalar
161      * @param rn the other scalars
162      * @return the minimum value of more than two relative scalars
163      */
164     public static FloatFlowMass min(final FloatFlowMass r1, final FloatFlowMass r2, final FloatFlowMass... rn)
165     {
166         FloatFlowMass minr = (r1.lt(r2)) ? r1 : r2;
167         for (FloatFlowMass r : rn)
168         {
169             if (r.lt(minr))
170             {
171                 minr = r;
172             }
173         }
174         return minr;
175     }
176 
177     /**
178      * Calculate the division of FloatFlowMass and FloatFlowMass, which results in a FloatDimensionless scalar.
179      * @param v FloatFlowMass scalar
180      * @return FloatDimensionless scalar as a division of FloatFlowMass and FloatFlowMass
181      */
182     public final FloatDimensionless divideBy(final FloatFlowMass v)
183     {
184         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
185     }
186 
187     /**
188      * Calculate the multiplication of FloatFlowMass and FloatDuration, which results in a FloatMass scalar.
189      * @param v FloatFlowMass scalar
190      * @return FloatMass scalar as a multiplication of FloatFlowMass and FloatDuration
191      */
192     public final FloatMass multiplyBy(final FloatDuration v)
193     {
194         return new FloatMass(this.si * v.si, MassUnit.SI);
195     }
196 
197     /**
198      * Calculate the division of FloatFlowMass and FloatFrequency, which results in a FloatMass scalar.
199      * @param v FloatFlowMass scalar
200      * @return FloatMass scalar as a division of FloatFlowMass and FloatFrequency
201      */
202     public final FloatMass divideBy(final FloatFrequency v)
203     {
204         return new FloatMass(this.si / v.si, MassUnit.SI);
205     }
206 
207     /**
208      * Calculate the division of FloatFlowMass and FloatMass, which results in a FloatFrequency scalar.
209      * @param v FloatFlowMass scalar
210      * @return FloatFrequency scalar as a division of FloatFlowMass and FloatMass
211      */
212     public final FloatFrequency divideBy(final FloatMass v)
213     {
214         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
215     }
216 
217     /**
218      * Calculate the multiplication of FloatFlowMass and FloatSpeed, which results in a FloatForce scalar.
219      * @param v FloatFlowMass scalar
220      * @return FloatForce scalar as a multiplication of FloatFlowMass and FloatSpeed
221      */
222     public final FloatForce multiplyBy(final FloatSpeed v)
223     {
224         return new FloatForce(this.si * v.si, ForceUnit.SI);
225     }
226 
227 }