View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.DurationUnit;
5   import org.djunits.unit.ElectricalChargeUnit;
6   import org.djunits.unit.ElectricalCurrentUnit;
7   
8   /**
9    * Easy access methods for the ElectricalCharge FloatScalar, which is relative by definition. An example is Speed. Instead of:
10   * 
11   * <pre>
12   * FloatScalar.Rel&lt;ElectricalChargeUnit&gt; value = new FloatScalar.Rel&lt;ElectricalChargeUnit&gt;(100.0, ElectricalChargeUnit.SI);
13   * </pre>
14   * 
15   * we can now write:
16   * 
17   * <pre>
18   * FloatElectricalCharge value = new FloatElectricalCharge(100.0, ElectricalChargeUnit.SI);
19   * </pre>
20   * 
21   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
22   * used are compatible.
23   * <p>
24   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
25   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
26   * <p>
27   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
28   * initial version Sep 5, 2015 <br>
29   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
30   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
31   */
32  public class FloatElectricalCharge extends AbstractFloatScalarRel<ElectricalChargeUnit, FloatElectricalCharge>
33  {
34      /** */
35      private static final long serialVersionUID = 20150901L;
36  
37      /** constant with value zero. */
38      public static final FloatElectricalCharge ZERO = new FloatElectricalCharge(0.0f, ElectricalChargeUnit.SI);
39  
40      /** constant with value NaN. */
41      @SuppressWarnings("checkstyle:constantname")
42      public static final FloatElectricalCharge NaN = new FloatElectricalCharge(Float.NaN, ElectricalChargeUnit.SI);
43  
44      /** constant with value POSITIVE_INFINITY. */
45      public static final FloatElectricalCharge POSITIVE_INFINITY =
46              new FloatElectricalCharge(Float.POSITIVE_INFINITY, ElectricalChargeUnit.SI);
47  
48      /** constant with value NEGATIVE_INFINITY. */
49      public static final FloatElectricalCharge NEGATIVE_INFINITY =
50              new FloatElectricalCharge(Float.NEGATIVE_INFINITY, ElectricalChargeUnit.SI);
51  
52      /** constant with value MAX_VALUE. */
53      public static final FloatElectricalCharge POS_MAXVALUE =
54              new FloatElectricalCharge(Float.MAX_VALUE, ElectricalChargeUnit.SI);
55  
56      /** constant with value -MAX_VALUE. */
57      public static final FloatElectricalCharge NEG_MAXVALUE =
58              new FloatElectricalCharge(-Float.MAX_VALUE, ElectricalChargeUnit.SI);
59  
60      /**
61       * Construct FloatElectricalCharge scalar.
62       * @param value float value
63       * @param unit unit for the float value
64       */
65      public FloatElectricalCharge(final float value, final ElectricalChargeUnit unit)
66      {
67          super(value, unit);
68      }
69  
70      /**
71       * Construct FloatElectricalCharge scalar.
72       * @param value Scalar from which to construct this instance
73       */
74      public FloatElectricalCharge(final FloatElectricalCharge value)
75      {
76          super(value);
77      }
78  
79      /**
80       * Construct FloatElectricalCharge scalar using a double value.
81       * @param value double value
82       * @param unit unit for the resulting float value
83       */
84      public FloatElectricalCharge(final double value, final ElectricalChargeUnit unit)
85      {
86          super((float) value, unit);
87      }
88  
89      /** {@inheritDoc} */
90      @Override
91      public final FloatElectricalCharge instantiateRel(final float value, final ElectricalChargeUnit unit)
92      {
93          return new FloatElectricalCharge(value, unit);
94      }
95  
96      /**
97       * Construct FloatElectricalCharge scalar.
98       * @param value float value in SI units
99       * @return the new scalar with the SI value
100      */
101     public static final FloatElectricalCharge createSI(final float value)
102     {
103         return new FloatElectricalCharge(value, ElectricalChargeUnit.SI);
104     }
105 
106     /**
107      * Interpolate between two values.
108      * @param zero the low value
109      * @param one the high value
110      * @param ratio the ratio between 0 and 1, inclusive
111      * @return a Scalar at the ratio between
112      */
113     public static FloatElectricalCharge interpolate(final FloatElectricalCharge zero, final FloatElectricalCharge one,
114             final float ratio)
115     {
116         return new FloatElectricalCharge(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio,
117                 zero.getUnit());
118     }
119 
120     /**
121      * Return the maximum value of two relative scalars.
122      * @param r1 the first scalar
123      * @param r2 the second scalar
124      * @return the maximum value of two relative scalars
125      */
126     public static FloatElectricalCharge max(final FloatElectricalCharge r1, final FloatElectricalCharge r2)
127     {
128         return (r1.gt(r2)) ? r1 : r2;
129     }
130 
131     /**
132      * Return the maximum value of more than two relative scalars.
133      * @param r1 the first scalar
134      * @param r2 the second scalar
135      * @param rn the other scalars
136      * @return the maximum value of more than two relative scalars
137      */
138     public static FloatElectricalCharge max(final FloatElectricalCharge r1, final FloatElectricalCharge r2,
139             final FloatElectricalCharge... rn)
140     {
141         FloatElectricalCharge maxr = (r1.gt(r2)) ? r1 : r2;
142         for (FloatElectricalCharge r : rn)
143         {
144             if (r.gt(maxr))
145             {
146                 maxr = r;
147             }
148         }
149         return maxr;
150     }
151 
152     /**
153      * Return the minimum value of two relative scalars.
154      * @param r1 the first scalar
155      * @param r2 the second scalar
156      * @return the minimum value of two relative scalars
157      */
158     public static FloatElectricalCharge min(final FloatElectricalCharge r1, final FloatElectricalCharge r2)
159     {
160         return (r1.lt(r2)) ? r1 : r2;
161     }
162 
163     /**
164      * Return the minimum value of more than two relative scalars.
165      * @param r1 the first scalar
166      * @param r2 the second scalar
167      * @param rn the other scalars
168      * @return the minimum value of more than two relative scalars
169      */
170     public static FloatElectricalCharge min(final FloatElectricalCharge r1, final FloatElectricalCharge r2,
171             final FloatElectricalCharge... rn)
172     {
173         FloatElectricalCharge minr = (r1.lt(r2)) ? r1 : r2;
174         for (FloatElectricalCharge r : rn)
175         {
176             if (r.lt(minr))
177             {
178                 minr = r;
179             }
180         }
181         return minr;
182     }
183 
184     /**
185      * Calculate the division of FloatElectricalCharge and FloatElectricalCharge, which results in a FloatDimensionless scalar.
186      * @param v FloatElectricalCharge scalar
187      * @return FloatDimensionless scalar as a division of FloatElectricalCharge and FloatElectricalCharge
188      */
189     public final FloatDimensionless divideBy(final FloatElectricalCharge v)
190     {
191         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
192     }
193 
194     /**
195      * Calculate the division of FloatElectricalCharge and FloatDuration, which results in a FloatElectricalCurrent scalar.
196      * @param v FloatElectricalCharge scalar
197      * @return FloatElectricalCurrent scalar as a division of FloatElectricalCharge and FloatDuration
198      */
199     public final FloatElectricalCurrent divideBy(final FloatDuration v)
200     {
201         return new FloatElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
202     }
203 
204     /**
205      * Calculate the division of FloatElectricalCharge and FloatElectricalCurrent, which results in a FloatDuration scalar.
206      * @param v FloatElectricalCharge scalar
207      * @return FloatDuration scalar as a division of FloatElectricalCharge and FloatElectricalCurrent
208      */
209     public final FloatDuration divideBy(final FloatElectricalCurrent v)
210     {
211         return new FloatDuration(this.si / v.si, DurationUnit.SI);
212     }
213 
214 }