| Package | Description |
|---|---|
| org.djunits.value.vdouble.scalar |
Double Scalar storage and calculations with units, absolute/relative.
|
| org.djunits.value.vdouble.vector |
Double Vector storage and calculations with units, absolute/relative, sparse/dense.
|
| Modifier and Type | Method and Description |
|---|---|
Length.Rel |
Length.Rel.abs()
Set the value(s) to their absolute value.
|
Length.Rel |
Length.Rel.acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
Length.Rel |
Length.Rel.asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Length.Rel |
Length.Rel.atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Length.Rel |
Length.Rel.cbrt()
Set the value(s) to the(ir) cube root.
|
Length.Rel |
Length.Rel.ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
Length.Rel |
Length.Rel.cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
Length.Rel |
Length.Rel.cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
Length.Rel |
Volume.divideBy(Area v)
Calculate the division of Volume and Area, which results in a Length scalar.
|
Length.Rel |
Length.Rel.divideBy(double divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
Length.Rel |
Torque.divideBy(Force v)
Calculate the division of Torque and Force, which results in a Length scalar.
|
Length.Rel |
Energy.divideBy(Force v)
Calculate the division of Energy and Force, which results in a Length scalar.
|
Length.Rel |
Speed.divideBy(Frequency v)
Calculate the division of Speed and Frequency, which results in a Length scalar.
|
Length.Rel |
Area.divideBy(Length.Rel v)
Calculate the division of Area and Length, which results in a Length scalar.
|
Length.Rel |
Dimensionless.Rel.divideBy(LinearDensity v)
Calculate the division of Dimensionless and LinearDensity, which results in a Length scalar.
|
Length.Rel |
Length.Rel.exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
Length.Rel |
Length.Rel.expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
Length.Rel |
Length.Rel.floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static Length.Rel |
Length.Rel.interpolate(Length.Rel zero,
Length.Rel one,
double ratio)
Interpolate between two values.
|
Length.Rel |
Length.Rel.inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
Length.Rel |
Length.Rel.log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
Length.Rel |
Length.Rel.log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
Length.Rel |
Length.Rel.log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
Length.Rel |
Length.Abs.minus(Length.Abs v)
Absolute scalar minus Absolute scalar = Relative scalar.
|
Length.Rel |
Length.Rel.minus(Length.Rel v)
Relative scalar minus Relative scalar = Relative scalar.
|
Length.Rel |
LinearDensity.multiplyBy(Area v)
Calculate the multiplication of LinearDensity and Area, which results in a Length scalar.
|
Length.Rel |
Length.Rel.multiplyBy(double factor)
Scale the value(s) by a factor.
|
Length.Rel |
Dimensionless.Rel.multiplyBy(Length.Rel v)
Calculate the multiplication of Dimensionless and Length, which results in a Length scalar.
|
Length.Rel |
Area.multiplyBy(LinearDensity v)
Calculate the multiplication of Area and LinearDensity, which results in a Length scalar.
|
Length.Rel |
Time.Rel.multiplyBy(Speed v)
Calculate the multiplication of Time and Speed, which results in a Length scalar.
|
Length.Rel |
Speed.multiplyBy(Time.Rel v)
Calculate the multiplication of Speed and Time, which results in a Length scalar.
|
Length.Rel |
Length.Rel.plus(Length.Rel v)
Relative scalar plus Relative scalar = Relative scalar.
|
Length.Rel |
Length.Rel.pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
Length.Rel |
Length.Rel.rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
Length.Rel |
Length.Rel.round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
Length.Rel |
Length.Rel.signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
Length.Rel |
Length.Rel.sin()
Set the value(s) to the trigonometric sine of the value(s).
|
Length.Rel |
Length.Rel.sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
Length.Rel |
Length.Rel.sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
Length.Rel |
Length.Rel.tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
Length.Rel |
Length.Rel.tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
Length.Rel |
Length.Rel.toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
Length.Rel |
Length.Rel.toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
Length.Rel |
Length.Abs.toRel()
Translate the absolute scalar into a relative scalar (e.g., before or after a multiplication or division).
|
| Modifier and Type | Method and Description |
|---|---|
Area |
Volume.divideBy(Length.Rel v)
Calculate the division of Volume and Length, which results in a Area scalar.
|
Force |
Torque.divideBy(Length.Rel v)
Calculate the division of Torque and Length, which results in a Force scalar.
|
Frequency |
Speed.divideBy(Length.Rel v)
Calculate the division of Speed and Length, which results in a Frequency scalar.
|
MoneyPerLength |
Money.divideBy(Length.Rel v)
Calculate the division of Money and Length, which results in a MoneyPerLength scalar.
|
Dimensionless.Rel |
Length.Rel.divideBy(Length.Rel v)
Calculate the division of Length and Length, which results in a Dimensionless scalar.
|
Force |
Energy.divideBy(Length.Rel v)
Calculate the division of Energy and Length, which results in a Force scalar.
|
LinearDensity |
Dimensionless.Rel.divideBy(Length.Rel v)
Calculate the division of Dimensionless and Length, which results in a LinearDensity scalar.
|
Length.Rel |
Area.divideBy(Length.Rel v)
Calculate the division of Area and Length, which results in a Length scalar.
|
static Length.Rel |
Length.Rel.interpolate(Length.Rel zero,
Length.Rel one,
double ratio)
Interpolate between two values.
|
Length.Rel |
Length.Rel.minus(Length.Rel v)
Relative scalar minus Relative scalar = Relative scalar.
|
Length.Abs |
Length.Abs.minus(Length.Rel v)
Absolute scalar minus Relative scalar = Absolute scalar.
|
Money |
MoneyPerLength.multiplyBy(Length.Rel v)
Calculate the multiplication of MoneyPerLength and Length, which results in a Money scalar.
|
Area |
Length.Rel.multiplyBy(Length.Rel v)
Calculate the multiplication of Length and Length, which results in a Area scalar.
|
Speed |
Frequency.multiplyBy(Length.Rel v)
Calculate the multiplication of Frequency and Length, which results in a Speed scalar.
|
Energy |
Force.multiplyBy(Length.Rel v)
Calculate the multiplication of Force and Length, which results in a Energy scalar.
|
Length.Rel |
Dimensionless.Rel.multiplyBy(Length.Rel v)
Calculate the multiplication of Dimensionless and Length, which results in a Length scalar.
|
Volume |
Area.multiplyBy(Length.Rel v)
Calculate the multiplication of Area and Length, which results in a Volume scalar.
|
Length.Rel |
Length.Rel.plus(Length.Rel v)
Relative scalar plus Relative scalar = Relative scalar.
|
Length.Abs |
Length.Abs.plus(Length.Rel v)
Absolute scalar plus Relative scalar = Absolute scalar.
|
| Modifier and Type | Method and Description |
|---|---|
Length.Rel |
MutableLengthVector.Rel.get(int index)
Retrieve the value stored at a specified index as a DoubleScalar.
|
Length.Rel |
LengthVector.Rel.get(int index)
Retrieve the value stored at a specified index as a DoubleScalar.
|
| Constructor and Description |
|---|
Dense(Length.Rel[] values)
Construct a new Relative Dense Immutable Length Vector.
|
Dense(Length.Rel[] values)
Construct a new Relative Dense Immutable Length Vector.
|
Sparse(Length.Rel[] values)
Construct a new Relative Sparse Immutable Length Vector.
|
Sparse(Length.Rel[] values)
Construct a new Relative Sparse Immutable Length Vector.
|
Copyright © 2015 Delft University of Technology. All rights reserved.