| Package | Description |
|---|---|
| org.djunits.value.vdouble.scalar |
Double Scalar storage and calculations with units, absolute/relative.
|
| org.djunits.value.vdouble.vector |
Double Vector storage and calculations with units, absolute/relative, sparse/dense.
|
| Modifier and Type | Method and Description |
|---|---|
FlowVolume |
FlowVolume.abs()
Set the value(s) to their absolute value.
|
FlowVolume |
FlowVolume.acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
FlowVolume |
FlowVolume.asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FlowVolume |
FlowVolume.atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
FlowVolume |
FlowVolume.cbrt()
Set the value(s) to the(ir) cube root.
|
FlowVolume |
FlowVolume.ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
FlowVolume |
FlowVolume.cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
FlowVolume |
FlowVolume.cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
FlowVolume |
FlowVolume.divideBy(double divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
FlowVolume |
Volume.divideBy(Time.Rel v)
Calculate the division of Volume and Time, which results in a FlowVolume scalar.
|
FlowVolume |
FlowVolume.exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
FlowVolume |
FlowVolume.expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
FlowVolume |
FlowVolume.floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static FlowVolume |
FlowVolume.interpolate(FlowVolume zero,
FlowVolume one,
double ratio)
Interpolate between two values.
|
FlowVolume |
FlowVolume.inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
FlowVolume |
FlowVolume.log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
FlowVolume |
FlowVolume.log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
FlowVolume |
FlowVolume.log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
FlowVolume |
FlowVolume.minus(FlowVolume v)
Relative scalar minus Relative scalar = Relative scalar.
|
FlowVolume |
Speed.multiplyBy(Area v)
Calculate the multiplication of Speed and Area, which results in a FlowVolume scalar.
|
FlowVolume |
FlowVolume.multiplyBy(double factor)
Scale the value(s) by a factor.
|
FlowVolume |
Dimensionless.Rel.multiplyBy(FlowVolume v)
Calculate the multiplication of Dimensionless and FlowVolume, which results in a FlowVolume scalar.
|
FlowVolume |
Area.multiplyBy(Speed v)
Calculate the multiplication of Area and Speed, which results in a FlowVolume scalar.
|
FlowVolume |
FlowVolume.plus(FlowVolume v)
Relative scalar plus Relative scalar = Relative scalar.
|
FlowVolume |
FlowVolume.pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
FlowVolume |
FlowVolume.rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
FlowVolume |
FlowVolume.round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
FlowVolume |
FlowVolume.signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
FlowVolume |
FlowVolume.sin()
Set the value(s) to the trigonometric sine of the value(s).
|
FlowVolume |
FlowVolume.sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
FlowVolume |
FlowVolume.sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
FlowVolume |
FlowVolume.tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
FlowVolume |
FlowVolume.tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
FlowVolume |
FlowVolume.toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
FlowVolume |
FlowVolume.toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
| Modifier and Type | Method and Description |
|---|---|
Time.Rel |
Volume.divideBy(FlowVolume v)
Calculate the division of Volume and FlowVolume, which results in a Time scalar.
|
Dimensionless.Rel |
FlowVolume.divideBy(FlowVolume v)
Calculate the division of FlowVolume and FlowVolume, which results in a Dimensionless scalar.
|
static FlowVolume |
FlowVolume.interpolate(FlowVolume zero,
FlowVolume one,
double ratio)
Interpolate between two values.
|
FlowVolume |
FlowVolume.minus(FlowVolume v)
Relative scalar minus Relative scalar = Relative scalar.
|
Volume |
Time.Rel.multiplyBy(FlowVolume v)
Calculate the multiplication of Time and FlowVolume, which results in a Volume scalar.
|
FlowVolume |
Dimensionless.Rel.multiplyBy(FlowVolume v)
Calculate the multiplication of Dimensionless and FlowVolume, which results in a FlowVolume scalar.
|
FlowVolume |
FlowVolume.plus(FlowVolume v)
Relative scalar plus Relative scalar = Relative scalar.
|
| Modifier and Type | Method and Description |
|---|---|
FlowVolume |
MutableFlowVolumeVector.get(int index)
Retrieve the value stored at a specified index as a DoubleScalar.
|
FlowVolume |
FlowVolumeVector.get(int index)
Retrieve the value stored at a specified index as a DoubleScalar.
|
| Constructor and Description |
|---|
Dense(FlowVolume[] values)
Construct a new Relative Dense Immutable FlowVolume Vector.
|
Dense(FlowVolume[] values)
Construct a new Relative Dense Immutable FlowVolume Vector.
|
Sparse(FlowVolume[] values)
Construct a new Relative Sparse Immutable FlowVolume Vector.
|
Sparse(FlowVolume[] values)
Construct a new Relative Sparse Immutable FlowVolume Vector.
|
Copyright © 2015 Delft University of Technology. All rights reserved.