public class Acceleration extends DoubleScalar.Rel<AccelerationUnit> implements Relative
Copyright (c) 2013-2015 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved.
BSD-style license. See DJUNITS License.
$LastChangedDate: 2015-10-04 20:45:14 +0200 (Sun, 04 Oct 2015) $, @version $Revision: 85 $, by $Author: averbraeck $, initial
version Sep 5, 2015
DoubleScalar.Abs<U extends Unit<U>>, DoubleScalar.Rel<U extends Unit<U>>si| Constructor and Description |
|---|
Acceleration(double value,
AccelerationUnit unit)
Construct Acceleration scalar.
|
Acceleration(DoubleScalar.Rel<AccelerationUnit> value)
Construct Acceleration scalar.
|
| Modifier and Type | Method and Description |
|---|---|
Acceleration |
abs()
Set the value(s) to their absolute value.
|
Acceleration |
acos()
Set the value(s) to the arc cosine of the value(s); the resulting angle is in the range 0.0 through pi.
|
Acceleration |
asin()
Set the value(s) to the arc sine of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Acceleration |
atan()
Set the value(s) to the arc tangent of the value(s); the resulting angle is in the range -pi/2 through pi/2.
|
Acceleration |
cbrt()
Set the value(s) to the(ir) cube root.
|
Acceleration |
ceil()
Set the value(s) to the smallest (closest to negative infinity) value(s) that are greater than or equal to the argument
and equal to a mathematical integer.
|
Acceleration |
cos()
Set the value(s) to the trigonometric cosine of the value(s).
|
Acceleration |
cosh()
Set the value(s) to the hyperbolic cosine of the value(s).
|
Dimensionless.Rel |
divideBy(Acceleration v)
Calculate the division of Acceleration and Acceleration, which results in a Dimensionless scalar.
|
Acceleration |
divideBy(double divisor)
Scale the value(s) by the inverse of a factor; i.e.
|
Speed |
divideBy(Frequency v)
Calculate the division of Acceleration and Frequency, which results in a Speed scalar.
|
Frequency |
divideBy(Speed v)
Calculate the division of Acceleration and Speed, which results in a Frequency scalar.
|
Acceleration |
exp()
Set the value(s) to Euler's number e raised to the power of the value(s).
|
Acceleration |
expm1()
Set the value(s) to Euler's number e raised to the power of the value(s) minus 1 (e^x - 1).
|
Acceleration |
floor()
Set the value(s) to the largest (closest to positive infinity) value(s) that are less than or equal to the argument and
equal to a mathematical integer.
|
static Acceleration |
interpolate(Acceleration zero,
Acceleration one,
double ratio)
Interpolate between two values.
|
Acceleration |
inv()
Set the value(s) to the complement (1.0/x) of the value(s).
|
Acceleration |
log()
Set the value(s) to the natural logarithm (base e) of the value(s).
|
Acceleration |
log10()
Set the value(s) to the base 10 logarithm of the value(s).
|
Acceleration |
log1p()
Set the value(s) to the natural logarithm of the sum of the value(s) and 1.
|
Acceleration |
minus(Acceleration v)
Relative scalar minus Relative scalar = Relative scalar.
|
Acceleration |
multiplyBy(double factor)
Scale the value(s) by a factor.
|
Force |
multiplyBy(Mass v)
Calculate the multiplication of Acceleration and Mass, which results in a Force scalar.
|
Speed |
multiplyBy(Time.Rel v)
Calculate the multiplication of Acceleration and Time, which results in a Speed scalar.
|
Acceleration |
plus(Acceleration v)
Relative scalar plus Relative scalar = Relative scalar.
|
Acceleration |
pow(double x)
Set the value(s) to the value(s) raised to the power of the argument.
|
Acceleration |
rint()
Set the value(s) to the value(s) that are closest in value to the argument and equal to a mathematical integer.
|
Acceleration |
round()
Set the value(s) to the closest long to the argument with ties rounding up.
|
Acceleration |
signum()
Set the value(s) to the signum function of the value(s); zero if the argument is zero, 1.0 if the argument is greater
than zero, -1.0 if the argument is less than zero.
|
Acceleration |
sin()
Set the value(s) to the trigonometric sine of the value(s).
|
Acceleration |
sinh()
Set the value(s) to the hyperbolic sine of the value(s).
|
Acceleration |
sqrt()
Set the value(s) to the correctly rounded positive square root of the value(s).
|
Acceleration |
tan()
Set the value(s) to the trigonometric tangent of the value(s).
|
Acceleration |
tanh()
Set the value(s) to the hyperbolic tangent of the value(s).
|
Acceleration |
toDegrees()
Set the value(s) to approximately equivalent angle(s) measured in degrees.
|
Acceleration |
toRadians()
Set the value(s) to approximately equivalent angle(s) measured in radians.
|
compareTo, eq, ge, getSI, gt, le, lt, minus, ne, plusdivide, divide, doubleValue, equals, floatValue, getInUnit, getInUnit, hashCode, interpolate, interpolate, intValue, longValue, minus, minus, minus, multiply, multiply, plus, plus, plus, toString, toString, toString, toStringexpressAsSIUnit, expressAsSpecifiedUnit, getUnit, isAbsolute, isRelativebyteValue, shortValuepublic Acceleration(double value,
AccelerationUnit unit)
value - double valueunit - unit for the double valuepublic Acceleration(DoubleScalar.Rel<AccelerationUnit> value)
value - Scalar from which to construct this instancepublic static Acceleration interpolate(Acceleration zero, Acceleration one, double ratio)
zero - the low valueone - the high valueratio - the ratio between 0 and 1, inclusivepublic final Acceleration abs()
abs in interface MathFunctions<DoubleScalar<AccelerationUnit>>abs in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration acos()
acos in interface MathFunctions<DoubleScalar<AccelerationUnit>>acos in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration asin()
asin in interface MathFunctions<DoubleScalar<AccelerationUnit>>asin in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration atan()
atan in interface MathFunctions<DoubleScalar<AccelerationUnit>>atan in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration cbrt()
cbrt in interface MathFunctions<DoubleScalar<AccelerationUnit>>cbrt in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration ceil()
ceil in interface MathFunctions<DoubleScalar<AccelerationUnit>>ceil in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration cos()
cos in interface MathFunctions<DoubleScalar<AccelerationUnit>>cos in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration cosh()
cosh in interface MathFunctions<DoubleScalar<AccelerationUnit>>cosh in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration exp()
exp in interface MathFunctions<DoubleScalar<AccelerationUnit>>exp in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration expm1()
expm1 in interface MathFunctions<DoubleScalar<AccelerationUnit>>expm1 in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration floor()
floor in interface MathFunctions<DoubleScalar<AccelerationUnit>>floor in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration log()
log in interface MathFunctions<DoubleScalar<AccelerationUnit>>log in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration log10()
log10 in interface MathFunctions<DoubleScalar<AccelerationUnit>>log10 in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration log1p()
log1p in interface MathFunctions<DoubleScalar<AccelerationUnit>>log1p in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration rint()
rint in interface MathFunctions<DoubleScalar<AccelerationUnit>>rint in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration round()
round in interface MathFunctions<DoubleScalar<AccelerationUnit>>round in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration signum()
signum in interface MathFunctions<DoubleScalar<AccelerationUnit>>signum in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration sin()
sin in interface MathFunctions<DoubleScalar<AccelerationUnit>>sin in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration sinh()
sinh in interface MathFunctions<DoubleScalar<AccelerationUnit>>sinh in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration sqrt()
sqrt in interface MathFunctions<DoubleScalar<AccelerationUnit>>sqrt in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration tan()
tan in interface MathFunctions<DoubleScalar<AccelerationUnit>>tan in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration tanh()
tanh in interface MathFunctions<DoubleScalar<AccelerationUnit>>tanh in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration inv()
inv in interface MathFunctions<DoubleScalar<AccelerationUnit>>inv in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration toDegrees()
toDegrees in interface MathFunctions<DoubleScalar<AccelerationUnit>>toDegrees in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration toRadians()
toRadians in interface MathFunctions<DoubleScalar<AccelerationUnit>>toRadians in class DoubleScalar.Rel<AccelerationUnit>public final Acceleration pow(double x)
pow in interface MathFunctions<DoubleScalar<AccelerationUnit>>pow in class DoubleScalar.Rel<AccelerationUnit>x - double; the value to use as the powerpublic final Acceleration multiplyBy(double factor)
multiplyBy in interface DoubleMathFunctions<DoubleScalar<AccelerationUnit>>multiplyBy in class DoubleScalar.Rel<AccelerationUnit>factor - double; the multiplierpublic final Acceleration divideBy(double divisor)
divideBy in interface DoubleMathFunctions<DoubleScalar<AccelerationUnit>>divideBy in class DoubleScalar.Rel<AccelerationUnit>divisor - double; the divisorpublic final Acceleration plus(Acceleration v)
v - the value to addpublic final Acceleration minus(Acceleration v)
v - the value to subtractpublic final Dimensionless.Rel divideBy(Acceleration v)
v - Acceleration scalarpublic final Force multiplyBy(Mass v)
v - Acceleration scalarpublic final Speed multiplyBy(Time.Rel v)
v - Acceleration scalarpublic final Speed divideBy(Frequency v)
v - Acceleration scalarCopyright © 2015 Delft University of Technology. All rights reserved.