View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import java.util.Locale;
4   
5   import org.djunits.unit.AngleUnit;
6   import org.djunits.unit.AngularAccelerationUnit;
7   import org.djunits.unit.AngularVelocityUnit;
8   import org.djunits.unit.DimensionlessUnit;
9   import org.djunits.unit.DurationUnit;
10  import org.djunits.unit.FrequencyUnit;
11  import org.djunits.value.vfloat.scalar.base.FloatScalar;
12  import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
13  import org.djutils.base.NumberParser;
14  import org.djutils.exceptions.Throw;
15  
16  import jakarta.annotation.Generated;
17  
18  /**
19   * Easy access methods for the FloatAngularVelocity FloatScalar, which is relative by definition.
20   * <p>
21   * Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
22   * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
23   * </p>
24   * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
25   * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
26   */
27  @Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
28  public class FloatAngularVelocity extends FloatScalarRel<AngularVelocityUnit, FloatAngularVelocity>
29  {
30      /** */
31      private static final long serialVersionUID = 20150901L;
32  
33      /** Constant with value zero. */
34      public static final FloatAngularVelocity ZERO = new FloatAngularVelocity(0.0f, AngularVelocityUnit.SI);
35  
36      /** Constant with value one. */
37      public static final FloatAngularVelocity ONE = new FloatAngularVelocity(1.0f, AngularVelocityUnit.SI);
38  
39      /** Constant with value NaN. */
40      @SuppressWarnings("checkstyle:constantname")
41      public static final FloatAngularVelocity NaN = new FloatAngularVelocity(Float.NaN, AngularVelocityUnit.SI);
42  
43      /** Constant with value POSITIVE_INFINITY. */
44      public static final FloatAngularVelocity POSITIVE_INFINITY =
45              new FloatAngularVelocity(Float.POSITIVE_INFINITY, AngularVelocityUnit.SI);
46  
47      /** Constant with value NEGATIVE_INFINITY. */
48      public static final FloatAngularVelocity NEGATIVE_INFINITY =
49              new FloatAngularVelocity(Float.NEGATIVE_INFINITY, AngularVelocityUnit.SI);
50  
51      /** Constant with value MAX_VALUE. */
52      public static final FloatAngularVelocity POS_MAXVALUE = new FloatAngularVelocity(Float.MAX_VALUE, AngularVelocityUnit.SI);
53  
54      /** Constant with value -MAX_VALUE. */
55      public static final FloatAngularVelocity NEG_MAXVALUE = new FloatAngularVelocity(-Float.MAX_VALUE, AngularVelocityUnit.SI);
56  
57      /**
58       * Construct FloatAngularVelocity scalar.
59       * @param value float; the float value
60       * @param unit unit for the float value
61       */
62      public FloatAngularVelocity(final float value, final AngularVelocityUnit unit)
63      {
64          super(value, unit);
65      }
66  
67      /**
68       * Construct FloatAngularVelocity scalar.
69       * @param value Scalar from which to construct this instance
70       */
71      public FloatAngularVelocity(final FloatAngularVelocity value)
72      {
73          super(value);
74      }
75  
76      /**
77       * Construct FloatAngularVelocity scalar using a double value.
78       * @param value double; the double value
79       * @param unit unit for the resulting float value
80       */
81      public FloatAngularVelocity(final double value, final AngularVelocityUnit unit)
82      {
83          super((float) value, unit);
84      }
85  
86      /** {@inheritDoc} */
87      @Override
88      public final FloatAngularVelocity instantiateRel(final float value, final AngularVelocityUnit unit)
89      {
90          return new FloatAngularVelocity(value, unit);
91      }
92  
93      /**
94       * Construct FloatAngularVelocity scalar.
95       * @param value float; the float value in SI units
96       * @return the new scalar with the SI value
97       */
98      public static final FloatAngularVelocity instantiateSI(final float value)
99      {
100         return new FloatAngularVelocity(value, AngularVelocityUnit.SI);
101     }
102 
103     /**
104      * Interpolate between two values.
105      * @param zero the low value
106      * @param one the high value
107      * @param ratio double; the ratio between 0 and 1, inclusive
108      * @return a Scalar at the ratio between
109      */
110     public static FloatAngularVelocity interpolate(final FloatAngularVelocity zero, final FloatAngularVelocity one,
111             final float ratio)
112     {
113         return new FloatAngularVelocity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
114                 zero.getDisplayUnit());
115     }
116 
117     /**
118      * Return the maximum value of two relative scalars.
119      * @param r1 the first scalar
120      * @param r2 the second scalar
121      * @return the maximum value of two relative scalars
122      */
123     public static FloatAngularVelocity max(final FloatAngularVelocity r1, final FloatAngularVelocity r2)
124     {
125         return r1.gt(r2) ? r1 : r2;
126     }
127 
128     /**
129      * Return the maximum value of more than two relative scalars.
130      * @param r1 the first scalar
131      * @param r2 the second scalar
132      * @param rn the other scalars
133      * @return the maximum value of more than two relative scalars
134      */
135     public static FloatAngularVelocity max(final FloatAngularVelocity r1, final FloatAngularVelocity r2,
136             final FloatAngularVelocity... rn)
137     {
138         FloatAngularVelocity maxr = r1.gt(r2) ? r1 : r2;
139         for (FloatAngularVelocity r : rn)
140         {
141             if (r.gt(maxr))
142             {
143                 maxr = r;
144             }
145         }
146         return maxr;
147     }
148 
149     /**
150      * Return the minimum value of two relative scalars.
151      * @param r1 the first scalar
152      * @param r2 the second scalar
153      * @return the minimum value of two relative scalars
154      */
155     public static FloatAngularVelocity min(final FloatAngularVelocity r1, final FloatAngularVelocity r2)
156     {
157         return r1.lt(r2) ? r1 : r2;
158     }
159 
160     /**
161      * Return the minimum value of more than two relative scalars.
162      * @param r1 the first scalar
163      * @param r2 the second scalar
164      * @param rn the other scalars
165      * @return the minimum value of more than two relative scalars
166      */
167     public static FloatAngularVelocity min(final FloatAngularVelocity r1, final FloatAngularVelocity r2,
168             final FloatAngularVelocity... rn)
169     {
170         FloatAngularVelocity minr = r1.lt(r2) ? r1 : r2;
171         for (FloatAngularVelocity r : rn)
172         {
173             if (r.lt(minr))
174             {
175                 minr = r;
176             }
177         }
178         return minr;
179     }
180 
181     /**
182      * Returns a FloatAngularVelocity representation of a textual representation of a value with a unit. The String
183      * representation that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the
184      * unit. Spaces are allowed, but not required, between the value and the unit.
185      * @param text String; the textual representation to parse into a FloatAngularVelocity
186      * @return FloatAngularVelocity; the Scalar representation of the value in its unit
187      * @throws IllegalArgumentException when the text cannot be parsed
188      * @throws NullPointerException when the text argument is null
189      */
190     public static FloatAngularVelocity valueOf(final String text)
191     {
192         Throw.whenNull(text, "Error parsing FloatAngularVelocity: text to parse is null");
193         Throw.when(text.length() == 0, IllegalArgumentException.class,
194                 "Error parsing FloatAngularVelocity: empty text to parse");
195         try
196         {
197             NumberParser numberParser = new NumberParser().lenient().trailing();
198             float f = numberParser.parseFloat(text);
199             String unitString = text.substring(numberParser.getTrailingPosition()).trim();
200             AngularVelocityUnit unit = AngularVelocityUnit.BASE.getUnitByAbbreviation(unitString);
201             if (unit == null)
202                 throw new IllegalArgumentException("Unit " + unitString + " not found");
203             return new FloatAngularVelocity(f, unit);
204         }
205         catch (Exception exception)
206         {
207             throw new IllegalArgumentException("Error parsing FloatAngularVelocity from " + text + " using Locale "
208                     + Locale.getDefault(Locale.Category.FORMAT), exception);
209         }
210     }
211 
212     /**
213      * Returns a FloatAngularVelocity based on a value and the textual representation of the unit, which can be localized.
214      * @param value double; the value to use
215      * @param unitString String; the textual representation of the unit
216      * @return FloatAngularVelocity; the Scalar representation of the value in its unit
217      * @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
218      * @throws NullPointerException when the unitString argument is null
219      */
220     public static FloatAngularVelocity of(final float value, final String unitString)
221     {
222         Throw.whenNull(unitString, "Error parsing FloatAngularVelocity: unitString is null");
223         Throw.when(unitString.length() == 0, IllegalArgumentException.class,
224                 "Error parsing FloatAngularVelocity: empty unitString");
225         AngularVelocityUnit unit = AngularVelocityUnit.BASE.getUnitByAbbreviation(unitString);
226         if (unit != null)
227         {
228             return new FloatAngularVelocity(value, unit);
229         }
230         throw new IllegalArgumentException("Error parsing FloatAngularVelocity with unit " + unitString);
231     }
232 
233     /**
234      * Calculate the division of FloatAngularVelocity and FloatAngularVelocity, which results in a FloatDimensionless scalar.
235      * @param v FloatAngularVelocity; scalar
236      * @return FloatDimensionless; scalar as a division of FloatAngularVelocity and FloatAngularVelocity
237      */
238     public final FloatDimensionless divide(final FloatAngularVelocity v)
239     {
240         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
241     }
242 
243     /**
244      * Calculate the division of FloatAngularVelocity and FloatAngle, which results in a FloatFrequency scalar.
245      * @param v FloatAngularVelocity; scalar
246      * @return FloatFrequency; scalar as a division of FloatAngularVelocity and FloatAngle
247      */
248     public final FloatFrequency divide(final FloatAngle v)
249     {
250         return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
251     }
252 
253     /**
254      * Calculate the division of FloatAngularVelocity and FloatFrequency, which results in a FloatAngle scalar.
255      * @param v FloatAngularVelocity; scalar
256      * @return FloatAngle; scalar as a division of FloatAngularVelocity and FloatFrequency
257      */
258     public final FloatAngle divide(final FloatFrequency v)
259     {
260         return new FloatAngle(this.si / v.si, AngleUnit.SI);
261     }
262 
263     /**
264      * Calculate the multiplication of FloatAngularVelocity and FloatDuration, which results in a FloatAngle scalar.
265      * @param v FloatAngularVelocity; scalar
266      * @return FloatAngle; scalar as a multiplication of FloatAngularVelocity and FloatDuration
267      */
268     public final FloatAngle times(final FloatDuration v)
269     {
270         return new FloatAngle(this.si * v.si, AngleUnit.SI);
271     }
272 
273     /**
274      * Calculate the division of FloatAngularVelocity and FloatDuration, which results in a FloatAngularAcceleration scalar.
275      * @param v FloatAngularVelocity; scalar
276      * @return FloatAngularAcceleration; scalar as a division of FloatAngularVelocity and FloatDuration
277      */
278     public final FloatAngularAcceleration divide(final FloatDuration v)
279     {
280         return new FloatAngularAcceleration(this.si / v.si, AngularAccelerationUnit.SI);
281     }
282 
283     /**
284      * Calculate the division of FloatAngularVelocity and FloatAngularAcceleration, which results in a FloatDuration scalar.
285      * @param v FloatAngularVelocity; scalar
286      * @return FloatDuration; scalar as a division of FloatAngularVelocity and FloatAngularAcceleration
287      */
288     public final FloatDuration divide(final FloatAngularAcceleration v)
289     {
290         return new FloatDuration(this.si / v.si, DurationUnit.SI);
291     }
292 
293     /**
294      * Calculate the multiplication of FloatAngularVelocity and FloatFrequency, which results in a FloatAngularAcceleration
295      * scalar.
296      * @param v FloatAngularVelocity; scalar
297      * @return FloatAngularAcceleration; scalar as a multiplication of FloatAngularVelocity and FloatFrequency
298      */
299     public final FloatAngularAcceleration times(final FloatFrequency v)
300     {
301         return new FloatAngularAcceleration(this.si * v.si, AngularAccelerationUnit.SI);
302     }
303 
304     /** {@inheritDoc} */
305     @Override
306     public FloatSIScalar reciprocal()
307     {
308         return FloatScalar.divide(FloatDimensionless.ONE, this);
309     }
310 
311 }