View Javadoc
1   package org.djunits.value.vfloat.scalar;
2   
3   import org.djunits.unit.DimensionlessUnit;
4   import org.djunits.unit.ElectricalCurrentUnit;
5   import org.djunits.unit.ElectricalPotentialUnit;
6   import org.djunits.unit.ElectricalResistanceUnit;
7   import org.djunits.unit.PowerUnit;
8   
9   /**
10   * Easy access methods for the ElectricalPotential FloatScalar, which is relative by definition. An example is Speed. Instead
11   * of:
12   * 
13   * <pre>
14   * FloatScalar.Rel&lt;ElectricalPotentialUnit&gt; value =
15   *         new FloatScalar.Rel&lt;ElectricalPotentialUnit&gt;(100.0, ElectricalPotentialUnit.SI);
16   * </pre>
17   * 
18   * we can now write:
19   * 
20   * <pre>
21   * FloatElectricalPotential value = new FloatElectricalPotential(100.0, ElectricalPotentialUnit.SI);
22   * </pre>
23   * 
24   * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
25   * used are compatible.
26   * <p>
27   * Copyright (c) 2013-2018 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
28   * BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
29   * <p>
30   * $LastChangedDate: 2018-01-28 03:17:44 +0100 (Sun, 28 Jan 2018) $, @version $Revision: 256 $, by $Author: averbraeck $,
31   * initial version Sep 5, 2015 <br>
32   * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
33   * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
34   */
35  public class FloatElectricalPotential extends AbstractFloatScalarRel<ElectricalPotentialUnit, FloatElectricalPotential>
36  {
37      /** */
38      private static final long serialVersionUID = 20150901L;
39  
40      /** constant with value zero. */
41      public static final FloatElectricalPotential ZERO = new FloatElectricalPotential(0.0f, ElectricalPotentialUnit.SI);
42  
43      /** constant with value NaN. */
44      @SuppressWarnings("checkstyle:constantname")
45      public static final FloatElectricalPotential NaN = new FloatElectricalPotential(Float.NaN, ElectricalPotentialUnit.SI);
46  
47      /** constant with value POSITIVE_INFINITY. */
48      public static final FloatElectricalPotential POSITIVE_INFINITY =
49              new FloatElectricalPotential(Float.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
50  
51      /** constant with value NEGATIVE_INFINITY. */
52      public static final FloatElectricalPotential NEGATIVE_INFINITY =
53              new FloatElectricalPotential(Float.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
54  
55      /** constant with value MAX_VALUE. */
56      public static final FloatElectricalPotential POS_MAXVALUE =
57              new FloatElectricalPotential(Float.MAX_VALUE, ElectricalPotentialUnit.SI);
58  
59      /** constant with value -MAX_VALUE. */
60      public static final FloatElectricalPotential NEG_MAXVALUE =
61              new FloatElectricalPotential(-Float.MAX_VALUE, ElectricalPotentialUnit.SI);
62  
63      /**
64       * Construct FloatElectricalPotential scalar.
65       * @param value float value
66       * @param unit unit for the float value
67       */
68      public FloatElectricalPotential(final float value, final ElectricalPotentialUnit unit)
69      {
70          super(value, unit);
71      }
72  
73      /**
74       * Construct FloatElectricalPotential scalar.
75       * @param value Scalar from which to construct this instance
76       */
77      public FloatElectricalPotential(final FloatElectricalPotential value)
78      {
79          super(value);
80      }
81  
82      /**
83       * Construct FloatElectricalPotential scalar using a double value.
84       * @param value double value
85       * @param unit unit for the resulting float value
86       */
87      public FloatElectricalPotential(final double value, final ElectricalPotentialUnit unit)
88      {
89          super((float) value, unit);
90      }
91  
92      /** {@inheritDoc} */
93      @Override
94      public final FloatElectricalPotential instantiateRel(final float value, final ElectricalPotentialUnit unit)
95      {
96          return new FloatElectricalPotential(value, unit);
97      }
98  
99      /**
100      * Construct FloatElectricalPotential scalar.
101      * @param value float value in SI units
102      * @return the new scalar with the SI value
103      */
104     public static final FloatElectricalPotential createSI(final float value)
105     {
106         return new FloatElectricalPotential(value, ElectricalPotentialUnit.SI);
107     }
108 
109     /**
110      * Interpolate between two values.
111      * @param zero the low value
112      * @param one the high value
113      * @param ratio the ratio between 0 and 1, inclusive
114      * @return a Scalar at the ratio between
115      */
116     public static FloatElectricalPotential interpolate(final FloatElectricalPotential zero, final FloatElectricalPotential one,
117             final float ratio)
118     {
119         return new FloatElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio,
120                 zero.getUnit());
121     }
122 
123     /**
124      * Return the maximum value of two relative scalars.
125      * @param r1 the first scalar
126      * @param r2 the second scalar
127      * @return the maximum value of two relative scalars
128      */
129     public static FloatElectricalPotential max(final FloatElectricalPotential r1, final FloatElectricalPotential r2)
130     {
131         return (r1.gt(r2)) ? r1 : r2;
132     }
133 
134     /**
135      * Return the maximum value of more than two relative scalars.
136      * @param r1 the first scalar
137      * @param r2 the second scalar
138      * @param rn the other scalars
139      * @return the maximum value of more than two relative scalars
140      */
141     public static FloatElectricalPotential max(final FloatElectricalPotential r1, final FloatElectricalPotential r2,
142             final FloatElectricalPotential... rn)
143     {
144         FloatElectricalPotential maxr = (r1.gt(r2)) ? r1 : r2;
145         for (FloatElectricalPotential r : rn)
146         {
147             if (r.gt(maxr))
148             {
149                 maxr = r;
150             }
151         }
152         return maxr;
153     }
154 
155     /**
156      * Return the minimum value of two relative scalars.
157      * @param r1 the first scalar
158      * @param r2 the second scalar
159      * @return the minimum value of two relative scalars
160      */
161     public static FloatElectricalPotential min(final FloatElectricalPotential r1, final FloatElectricalPotential r2)
162     {
163         return (r1.lt(r2)) ? r1 : r2;
164     }
165 
166     /**
167      * Return the minimum value of more than two relative scalars.
168      * @param r1 the first scalar
169      * @param r2 the second scalar
170      * @param rn the other scalars
171      * @return the minimum value of more than two relative scalars
172      */
173     public static FloatElectricalPotential min(final FloatElectricalPotential r1, final FloatElectricalPotential r2,
174             final FloatElectricalPotential... rn)
175     {
176         FloatElectricalPotential minr = (r1.lt(r2)) ? r1 : r2;
177         for (FloatElectricalPotential r : rn)
178         {
179             if (r.lt(minr))
180             {
181                 minr = r;
182             }
183         }
184         return minr;
185     }
186 
187     /**
188      * Calculate the division of FloatElectricalPotential and FloatElectricalPotential, which results in a FloatDimensionless
189      * scalar.
190      * @param v FloatElectricalPotential scalar
191      * @return FloatDimensionless scalar as a division of FloatElectricalPotential and FloatElectricalPotential
192      */
193     public final FloatDimensionless divideBy(final FloatElectricalPotential v)
194     {
195         return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
196     }
197 
198     /**
199      * Calculate the multiplication of FloatElectricalPotential and FloatElectricalCurrent, which results in a FloatPower
200      * scalar.
201      * @param v FloatElectricalPotential scalar
202      * @return FloatPower scalar as a multiplication of FloatElectricalPotential and FloatElectricalCurrent
203      */
204     public final FloatPower multiplyBy(final FloatElectricalCurrent v)
205     {
206         return new FloatPower(this.si * v.si, PowerUnit.SI);
207     }
208 
209     /**
210      * Calculate the division of FloatElectricalPotential and FloatElectricalCurrent, which results in a
211      * FloatElectricalResistance scalar.
212      * @param v FloatElectricalPotential scalar
213      * @return FloatElectricalResistance scalar as a division of FloatElectricalPotential and FloatElectricalCurrent
214      */
215     public final FloatElectricalResistance divideBy(final FloatElectricalCurrent v)
216     {
217         return new FloatElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
218     }
219 
220     /**
221      * Calculate the division of FloatElectricalPotential and FloatElectricalResistance, which results in a
222      * FloatElectricalCurrent scalar.
223      * @param v FloatElectricalPotential scalar
224      * @return FloatElectricalCurrent scalar as a division of FloatElectricalPotential and FloatElectricalResistance
225      */
226     public final FloatElectricalCurrent divideBy(final FloatElectricalResistance v)
227     {
228         return new FloatElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
229     }
230 
231 }