FloatVectorData.java
package org.djunits.value.vfloat.vector.data;
import java.io.Serializable;
import java.util.Arrays;
import java.util.List;
import java.util.Map;
import java.util.stream.IntStream;
import org.djunits.unit.Unit;
import org.djunits.unit.scale.Scale;
import org.djunits.value.ValueRuntimeException;
import org.djunits.value.storage.Storage;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.function.FloatFunction;
import org.djunits.value.vfloat.function.FloatFunction2;
import org.djunits.value.vfloat.scalar.base.FloatScalar;
import org.djutils.exceptions.Throw;
/**
* Stores the data for a FloatVector and carries out basic operations.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
public abstract class FloatVectorData extends Storage<FloatVectorData> implements Serializable
{
/** */
private static final long serialVersionUID = 1L;
/** The internal storage of the Vector; can be sparse or dense. */
@SuppressWarnings("checkstyle:visibilitymodifier")
protected float[] vectorSI;
/**
* Construct a new FloatVectorData object.
* @param storageType StorageType; the data type.
*/
FloatVectorData(final StorageType storageType)
{
super(storageType);
}
/* ============================================================================================ */
/* ====================================== INSTANTIATION ======================================= */
/* ============================================================================================ */
/**
* Instantiate a FloatVectorData with the right data type.
* @param values float[]; the (SI) values to store
* @param scale Scale; the scale of the unit to use for conversion to SI
* @param storageType StorageType; the data type to use
* @return FloatVectorData; the FloatVectorData with the right data type
* @throws NullPointerException when values are null, or storageType is null
*/
public static FloatVectorData instantiate(final float[] values, final Scale scale, final StorageType storageType)
{
Throw.whenNull(values, "FloatVectorData.instantiate: float[] values is null");
Throw.whenNull(scale, "FloatVectorData.instantiate: scale is null");
Throw.whenNull(storageType, "FloatVectorData.instantiate: storageType is null");
float[] valuesSI = new float[values.length];
IntStream.range(0, values.length).parallel().forEach(i -> valuesSI[i] = (float) scale.toStandardUnit(values[i]));
if (storageType.equals(StorageType.DENSE))
{
return new FloatVectorDataDense(valuesSI);
}
else
{
return FloatVectorDataSparse.instantiate(valuesSI);
}
}
/**
* Instantiate a FloatVectorData with the right data type.
* @param values List<? extends Number>; the values to store, can either be a list of numbers, or a list of
* FloatScalars
* @param scale Scale; the scale of the unit to use for conversion to SI
* @param storageType StorageType; the data type to use
* @return FloatVectorData; the FloatVectorData with the right data type
* @throws NullPointerException when list is null, or storageType is null
*/
public static FloatVectorData instantiate(final List<? extends Number> values, final Scale scale,
final StorageType storageType)
{
Throw.whenNull(values, "FloatVectorData.instantiate: float[] values is null");
Throw.whenNull(scale, "FloatVectorData.instantiate: scale is null");
Throw.whenNull(storageType, "FloatVectorData.instantiate: storageType is null");
Throw.when(values.parallelStream().filter(d -> d == null).count() > 0, NullPointerException.class,
"values contains one or more null values");
float[] valuesSI = new float[values.size()];
IntStream.range(0, values.size()).parallel()
.forEach(i -> valuesSI[i] = (float) scale.toStandardUnit(values.get(i).floatValue()));
if (storageType.equals(StorageType.DENSE))
{
return new FloatVectorDataDense(valuesSI);
}
else
{
return FloatVectorDataSparse.instantiate(valuesSI);
}
}
/**
* Instantiate a FloatVectorData with the right data type.
* @param values S[]; the values to store
* @param storageType StorageType; the data type to use
* @return FloatVectorData; the FloatVectorData with the right data type
* @throws NullPointerException when values is null, or storageType is null
* @param <U> the unit type
* @param <S> the corresponding scalar type
*/
public static <U extends Unit<U>, S extends FloatScalar<U, S>> FloatVectorData instantiate(final S[] values,
final StorageType storageType)
{
Throw.whenNull(values, "FloatVectorData.instantiate: double[] values is null");
Throw.whenNull(storageType, "FloatVectorData.instantiate: storageType is null");
for (S s : values)
{
Throw.whenNull(s, "null value in values");
}
float[] valuesSI = new float[values.length];
IntStream.range(0, values.length).parallel().forEach(i -> valuesSI[i] = values[i].getSI());
if (storageType.equals(StorageType.DENSE))
{
return new FloatVectorDataDense(valuesSI);
}
else
{
return FloatVectorDataSparse.instantiate(valuesSI);
}
}
/**
* Instantiate a FloatVectorData with the right data type.
* @param valueMap Map<Integer,? extends Number>; the values to store; either Numbers or FloatScalars
* @param size int; the size of the vector to pad with 0 after last entry in map
* @param scale Scale; the scale of the unit to use for conversion to SI
* @param storageType StorageType; the data type to use
* @return FloatVectorData; the FloatVectorData with the right data type
* @throws IllegalArgumentException when length < 0
* @throws NullPointerException when values is null, or storageType is null
* @throws IndexOutOfBoundsException when one of the keys is out of range with the given size
*/
public static FloatVectorData instantiate(final Map<Integer, ? extends Number> valueMap, final int size, final Scale scale,
final StorageType storageType) throws IllegalArgumentException, IndexOutOfBoundsException
{
Throw.whenNull(valueMap, "FloatVectorData.instantiate: values is null");
Throw.when(size < 0, IllegalArgumentException.class, "size must be >= 0");
Throw.whenNull(scale, "FloatVectorData.instantiate: scale is null");
Throw.whenNull(storageType, "FloatVectorData.instantiate: storageType is null");
for (Integer key : valueMap.keySet())
{
Throw.when(key < 0 || key >= size, IndexOutOfBoundsException.class, "Key in values out of range");
}
if (storageType.equals(StorageType.DENSE))
{
float[] valuesSI = new float[size];
if (scale.isBaseSIScale())
{
valueMap.entrySet().parallelStream().forEach(entry -> valuesSI[entry.getKey()] = entry.getValue().floatValue());
}
else
{
Arrays.fill(valuesSI, (float) scale.toStandardUnit(0.0));
valueMap.entrySet().parallelStream().forEach(
entry -> valuesSI[entry.getKey()] = (float) scale.toStandardUnit(entry.getValue().floatValue()));
}
return new FloatVectorDataDense(valuesSI);
}
else // StorageType.SPARSE
{
int nonZeroCount;
if (scale.isBaseSIScale())
{
nonZeroCount = (int) valueMap.values().parallelStream().filter(f -> f.floatValue() != 0f).count();
}
else
{
// Much harder, and the result is unlikely to be very sparse
nonZeroCount = size - (int) valueMap.values().parallelStream()
.filter(d -> scale.toStandardUnit(d.floatValue()) == 0d).count();
}
int[] indices = new int[nonZeroCount];
float[] valuesSI = new float[nonZeroCount];
if (scale.isBaseSIScale())
{
int index = 0;
for (Integer key : valueMap.keySet())
{
float value = valueMap.get(key).floatValue();
if (0.0 != value)
{
indices[index] = key;
valuesSI[index] = value;
index++;
}
}
}
else
{
Arrays.fill(valuesSI, (float) scale.toStandardUnit(0.0));
int index = 0;
int lastKey = 0;
for (Integer key : valueMap.keySet())
{
for (int i = lastKey; i < key; i++)
{
indices[index++] = i;
}
lastKey = key;
float value = (float) scale.toStandardUnit(valueMap.get(key).floatValue());
if (0.0 != value)
{
indices[index] = key;
valuesSI[index] = value;
index++;
}
lastKey = key + 1;
}
while (index < indices.length)
{
indices[index++] = lastKey++;
}
}
return new FloatVectorDataSparse(valuesSI, indices, size);
}
}
/* ============================================================================================ */
/* ==================================== UTILITY FUNCTIONS ===================================== */
/* ============================================================================================ */
/**
* Retrieve the size of the vector.
* @return int; the size of the vector
*/
public abstract int size();
/**
* Return the densely stored equivalent of this data.
* @return FloatVectorDataDense; the dense transformation of this data
*/
public abstract FloatVectorDataDense toDense();
/**
* Return the sparsely stored equivalent of this data.
* @return FloatVectorDataSparse; the sparse transformation of this data
*/
public abstract FloatVectorDataSparse toSparse();
/**
* Retrieve the SI value of one element of this data.
* @param index int; the index to get the value for
* @return the value at the index
*/
public abstract float getSI(int index);
/**
* Sets a value at the index in the vector.
* @param index int; the index to set the value for
* @param valueSI float; the value at the index
*/
public abstract void setSI(int index, float valueSI);
/**
* Compute and return the sum of all values.
* @return double; the sum of the values of all cells
*/
public final float zSum()
{
// this does not copy the data. See http://stackoverflow.com/questions/23106093/how-to-get-a-stream-from-a-float
return (float) IntStream.range(0, this.vectorSI.length).parallel().mapToDouble(i -> this.vectorSI[i]).sum();
}
/**
* Create and return a dense copy of the data.
* @return float[]; a safe copy of VectorSI
*/
public abstract float[] getDenseVectorSI();
/**
* Check the sizes of this data object and the other data object.
* @param other FloatVectorData; the other data object
* @throws ValueRuntimeException if vectors have different lengths
*/
protected void checkSizes(final FloatVectorData other) throws ValueRuntimeException
{
if (this.size() != other.size())
{
throw new ValueRuntimeException("Two data objects used in a FloatVector operation do not have the same size");
}
}
/* ============================================================================================ */
/* ================================== CALCULATION FUNCTIONS =================================== */
/* ============================================================================================ */
/**
* Apply an operation to each cell.
* @param floatFunction FloatFunction; the operation to apply
* @return FloatVectorData; this (modified) float vector data object
*/
public abstract FloatVectorData assign(FloatFunction floatFunction);
/**
* Apply a binary operation on a cell by cell basis.
* @param floatFunction2 FloatFunction2; the binary operation to apply
* @param right FloatVectorData; the right operand for the binary operation
* @return DoubleMatrixData; this (modified) float vector data object
* @throws ValueRuntimeException when the sizes of the vectors do not match
*/
abstract FloatVectorData assign(FloatFunction2 floatFunction2, FloatVectorData right) throws ValueRuntimeException;
/**
* Add two vectors on a cell-by-cell basis. If both vectors are sparse, a sparse vector is returned, otherwise a dense
* vector is returned.
* @param right FloatVectorData; the other data object to add
* @return FloatVectorData; the sum of this data object and the other data object
* @throws ValueRuntimeException if vectors have different lengths
*/
public abstract FloatVectorData plus(FloatVectorData right) throws ValueRuntimeException;
/**
* Add a vector to this vector on a cell-by-cell basis. The type of vector (sparse, dense) stays the same.
* @param right FloatVectorData; the other data object to add
* @return FloatVectorData; this modified float vector data object
* @throws ValueRuntimeException if vectors have different lengths
*/
public final FloatVectorData incrementBy(final FloatVectorData right) throws ValueRuntimeException
{
return assign(new FloatFunction2()
{
@Override
public float apply(final float leftValue, final float rightValue)
{
return leftValue + rightValue;
}
}, right);
}
/**
* Subtract two vectors on a cell-by-cell basis. If both vectors are sparse, a sparse vector is returned, otherwise a dense
* vector is returned.
* @param right FloatVectorData; the other data object to subtract
* @return FloatVectorData; the difference of this data object and the other data object
* @throws ValueRuntimeException if vectors have different lengths
*/
public abstract FloatVectorData minus(FloatVectorData right) throws ValueRuntimeException;
/**
* Subtract a vector from this vector on a cell-by-cell basis. The type of vector (sparse, dense) stays the same.
* @param right FloatVectorData; the other data object to subtract
* @return FloatVectorData; this modified float vector data object
* @throws ValueRuntimeException if vectors have different lengths
*/
public final FloatVectorData decrementBy(final FloatVectorData right) throws ValueRuntimeException
{
return assign(new FloatFunction2()
{
@Override
public float apply(final float leftValue, final float rightValue)
{
return leftValue - rightValue;
}
}, right);
}
/**
* Multiply two vector on a cell-by-cell basis. If both vectors are dense, a dense vector is returned, otherwise a sparse
* vector is returned.
* @param right FloatVectorData; the other data object to multiply with
* @return FloatVectorData; a new double vector data store holding the result of the multiplications
* @throws ValueRuntimeException if vectors have different lengths
*/
public abstract FloatVectorData times(FloatVectorData right) throws ValueRuntimeException;
/**
* Multiply a vector with the values of another vector on a cell-by-cell basis. The type of vector (sparse, dense) stays the
* same.
* @param right FloatVectorData; the other data object to multiply with
* @return FloatVectorData; this modified float vector data store
* @throws ValueRuntimeException if vectors have different lengths
*/
public final FloatVectorData multiplyBy(final FloatVectorData right) throws ValueRuntimeException
{
assign(new FloatFunction2()
{
@Override
public float apply(final float leftValue, final float rightValue)
{
return leftValue * rightValue;
}
}, right);
return this;
}
/**
* Divide two vectors on a cell-by-cell basis. If this vector is sparse and <code>right</code> is dense, a sparse vector is
* returned, otherwise a dense vector is returned.
* @param right FloatVectorData; the other data object to divide by
* @return FloatVectorData; the ratios of the values of this data object and the other data object
* @throws ValueRuntimeException if vectors have different lengths
*/
public abstract FloatVectorData divide(FloatVectorData right) throws ValueRuntimeException;
/**
* Divide the values of a vector by the values of another vector on a cell-by-cell basis. The type of vector (sparse, dense)
* stays the same.
* @param right FloatVectorData; the other data object to divide by
* @return FloatVectorData; this modified float vector data store
* @throws ValueRuntimeException if vectors have different lengths
*/
public final FloatVectorData divideBy(final FloatVectorData right) throws ValueRuntimeException
{
return assign(new FloatFunction2()
{
@Override
public float apply(final float leftValue, final float rightValue)
{
return leftValue / rightValue;
}
}, right);
}
/* ============================================================================================ */
/* =============================== EQUALS, HASHCODE, TOSTRING ================================= */
/* ============================================================================================ */
@Override
public int hashCode()
{
final int prime = 31;
int result = 1;
result = prime * result + this.size();
for (int index = 0; index < this.size(); index++)
{
result = 31 * result + Float.floatToIntBits(getSI(index));
}
return result;
}
/**
* Compare contents of a dense and a sparse vector.
* @param dm FloatVectorDataDense; the dense vector
* @param sm FloatVectorDataSparse; the sparse vector
* @return boolean; true if the contents are equal
*/
protected boolean compareDenseVectorWithSparseVector(final FloatVectorDataDense dm, final FloatVectorDataSparse sm)
{
for (int index = 0; index < dm.size(); index++)
{
if (dm.getSI(index) != sm.getSI(index))
{
return false;
}
}
return true;
}
@Override
@SuppressWarnings("checkstyle:needbraces")
public boolean equals(final Object obj)
{
if (this == obj)
return true;
if (obj == null)
return false;
if (!(obj instanceof FloatVectorData))
return false;
FloatVectorData other = (FloatVectorData) obj;
if (this.size() != other.size())
return false;
if (other instanceof FloatVectorDataSparse && this instanceof FloatVectorDataDense)
{
return compareDenseVectorWithSparseVector((FloatVectorDataDense) this, (FloatVectorDataSparse) other);
}
else if (other instanceof FloatVectorDataDense && this instanceof FloatVectorDataSparse)
{
return compareDenseVectorWithSparseVector((FloatVectorDataDense) other, (FloatVectorDataSparse) this);
}
// Both are dense (both sparse is handled in FloatVectorDataSparse class)
return Arrays.equals(this.vectorSI, other.vectorSI);
}
@Override
public String toString()
{
return "FloatVectorData [storageType=" + getStorageType() + ", vectorSI=" + Arrays.toString(this.vectorSI) + "]";
}
}