FloatMass.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.DensityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MomentumUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.unit.si.SIPrefixes;
import org.djunits.value.vfloat.scalar.base.FloatScalar;
import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatMass FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatMass extends FloatScalarRel<MassUnit, FloatMass>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatMass ZERO = new FloatMass(0.0f, MassUnit.SI);
/** Constant with value one. */
public static final FloatMass ONE = new FloatMass(1.0f, MassUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatMass NaN = new FloatMass(Float.NaN, MassUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatMass POSITIVE_INFINITY = new FloatMass(Float.POSITIVE_INFINITY, MassUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatMass NEGATIVE_INFINITY = new FloatMass(Float.NEGATIVE_INFINITY, MassUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatMass POS_MAXVALUE = new FloatMass(Float.MAX_VALUE, MassUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatMass NEG_MAXVALUE = new FloatMass(-Float.MAX_VALUE, MassUnit.SI);
/**
* Construct FloatMass scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatMass(final float value, final MassUnit unit)
{
super(value, unit);
}
/**
* Construct FloatMass scalar.
* @param value Scalar from which to construct this instance
*/
public FloatMass(final FloatMass value)
{
super(value);
}
/**
* Construct FloatMass scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatMass(final double value, final MassUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatMass instantiateRel(final float value, final MassUnit unit)
{
return new FloatMass(value, unit);
}
/**
* Construct FloatMass scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatMass instantiateSI(final float value)
{
return new FloatMass(value, MassUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatMass interpolate(final FloatMass zero, final FloatMass one, final float ratio)
{
return new FloatMass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatMass max(final FloatMass r1, final FloatMass r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatMass max(final FloatMass r1, final FloatMass r2, final FloatMass... rn)
{
FloatMass maxr = r1.gt(r2) ? r1 : r2;
for (FloatMass r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatMass min(final FloatMass r1, final FloatMass r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatMass min(final FloatMass r1, final FloatMass r2, final FloatMass... rn)
{
FloatMass minr = r1.lt(r2) ? r1 : r2;
for (FloatMass r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatMass representation of a textual representation of a value with a unit. The String representation that can
* be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatMass
* @return FloatMass; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatMass valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatMass: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatMass: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FloatMass(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing FloatMass from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a FloatMass based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatMass; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatMass of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatMass: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatMass: empty unitString");
MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatMass(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatMass with unit " + unitString);
}
@Override
public String toStringSIPrefixed(final int smallestPower, final int biggestPower)
{
if (!Float.isFinite(this.si))
{
return toString(getDisplayUnit().getStandardUnit());
}
// PK: I can't think of an easier way to figure out what the exponent will be; rounding of the mantissa to the available
// width makes this hard; This feels like an expensive way.
String check = String.format(this.si >= 0 ? "%10.8E" : "%10.7E", this.si);
int exponent = Integer.parseInt(check.substring(check.indexOf("E") + 1));
if (exponent < -27 || exponent < smallestPower || exponent > 21 + 2 || exponent > biggestPower)
{
// Out of SI prefix range; do not scale.
return String.format(this.si >= 0 ? "%10.4E" : "%10.3E", this.si) + " "
+ getDisplayUnit().getStandardUnit().getId();
}
Integer roundedExponent = (int) Math.ceil((exponent - 2.0) / 3) * 3 + 3;
// System.out.print(String.format("exponent=%d; roundedExponent=%d ", exponent, roundedExponent));
String key = SIPrefixes.FACTORS.get(roundedExponent).getDefaultTextualPrefix() + "g";
MassUnit displayUnit = getDisplayUnit().getQuantity().getUnitByAbbreviation(key);
return toString(displayUnit);
}
/**
* Calculate the division of FloatMass and FloatMass, which results in a FloatDimensionless scalar.
* @param v FloatMass; scalar
* @return FloatDimensionless; scalar as a division of FloatMass and FloatMass
*/
public final FloatDimensionless divide(final FloatMass v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatFlowMass, which results in a FloatDuration scalar.
* @param v FloatMass; scalar
* @return FloatDuration; scalar as a division of FloatMass and FloatFlowMass
*/
public final FloatDuration divide(final FloatFlowMass v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatDuration, which results in a FloatFlowMass scalar.
* @param v FloatMass; scalar
* @return FloatFlowMass; scalar as a division of FloatMass and FloatDuration
*/
public final FloatFlowMass divide(final FloatDuration v)
{
return new FloatFlowMass(this.si / v.si, FlowMassUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatAcceleration, which results in a FloatForce scalar.
* @param v FloatMass; scalar
* @return FloatForce; scalar as a multiplication of FloatMass and FloatAcceleration
*/
public final FloatForce times(final FloatAcceleration v)
{
return new FloatForce(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatFrequency, which results in a FloatFlowMass scalar.
* @param v FloatMass; scalar
* @return FloatFlowMass; scalar as a multiplication of FloatMass and FloatFrequency
*/
public final FloatFlowMass times(final FloatFrequency v)
{
return new FloatFlowMass(this.si * v.si, FlowMassUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatDensity, which results in a FloatVolume scalar.
* @param v FloatMass; scalar
* @return FloatVolume; scalar as a division of FloatMass and FloatDensity
*/
public final FloatVolume divide(final FloatDensity v)
{
return new FloatVolume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatVolume, which results in a FloatDensity scalar.
* @param v FloatMass; scalar
* @return FloatDensity; scalar as a division of FloatMass and FloatVolume
*/
public final FloatDensity divide(final FloatVolume v)
{
return new FloatDensity(this.si / v.si, DensityUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatSpeed, which results in a FloatMomentum scalar.
* @param v FloatMass; scalar
* @return FloatMomentum; scalar as a multiplication of FloatMass and FloatSpeed
*/
public final FloatMomentum times(final FloatSpeed v)
{
return new FloatMomentum(this.si * v.si, MomentumUnit.SI);
}
@Override
public FloatSIScalar reciprocal()
{
return FloatScalar.divide(FloatDimensionless.ONE, this);
}
}