FloatDuration.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.AngleUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalCapacitanceUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.ElectricalInductanceUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.TimeUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalarRelWithAbs;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatDuration FloatScalar.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatDuration extends FloatScalarRelWithAbs<TimeUnit, FloatTime, DurationUnit, FloatDuration>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatDuration ZERO = new FloatDuration(0.0f, DurationUnit.SI);
/** Constant with value one. */
public static final FloatDuration ONE = new FloatDuration(1.0f, DurationUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatDuration NaN = new FloatDuration(Float.NaN, DurationUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatDuration POSITIVE_INFINITY = new FloatDuration(Float.POSITIVE_INFINITY, DurationUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatDuration NEGATIVE_INFINITY = new FloatDuration(Float.NEGATIVE_INFINITY, DurationUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatDuration POS_MAXVALUE = new FloatDuration(Float.MAX_VALUE, DurationUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatDuration NEG_MAXVALUE = new FloatDuration(-Float.MAX_VALUE, DurationUnit.SI);
/**
* Construct FloatDuration scalar.
* @param value float; the float value
* @param unit DurationUnit; unit for the float value
*/
public FloatDuration(final float value, final DurationUnit unit)
{
super(value, unit);
}
/**
* Construct FloatDuration scalar.
* @param value FloatDuration; Scalar from which to construct this instance
*/
public FloatDuration(final FloatDuration value)
{
super(value);
}
/**
* Construct FloatDuration scalar using a double value.
* @param value double; the double value
* @param unit DurationUnit; unit for the resulting float value
*/
public FloatDuration(final double value, final DurationUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatDuration instantiateRel(final float value, final DurationUnit unit)
{
return new FloatDuration(value, unit);
}
/**
* Construct FloatDuration scalar.
* @param value float; the float value in SI units
* @return FloatDuration; the new scalar with the SI value
*/
public static final FloatDuration instantiateSI(final float value)
{
return new FloatDuration(value, DurationUnit.SI);
}
@Override
public final FloatTime instantiateAbs(final float value, final TimeUnit unit)
{
return new FloatTime(value, unit);
}
/**
* Interpolate between two values.
* @param zero FloatDuration; the low value
* @param one FloatDuration; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return FloatDuration; a Scalar at the ratio between
*/
public static FloatDuration interpolate(final FloatDuration zero, final FloatDuration one, final float ratio)
{
return new FloatDuration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @return FloatDuration; the maximum value of two relative scalars
*/
public static FloatDuration max(final FloatDuration r1, final FloatDuration r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @param rn FloatDuration...; the other scalars
* @return FloatDuration; the maximum value of more than two relative scalars
*/
public static FloatDuration max(final FloatDuration r1, final FloatDuration r2, final FloatDuration... rn)
{
FloatDuration maxr = r1.gt(r2) ? r1 : r2;
for (FloatDuration r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @return FloatDuration; the minimum value of two relative scalars
*/
public static FloatDuration min(final FloatDuration r1, final FloatDuration r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @param rn FloatDuration...; the other scalars
* @return FloatDuration; the minimum value of more than two relative scalars
*/
public static FloatDuration min(final FloatDuration r1, final FloatDuration r2, final FloatDuration... rn)
{
FloatDuration minr = r1.lt(r2) ? r1 : r2;
for (FloatDuration r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatDuration representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatDuration
* @return FloatDuration; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatDuration valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatDuration: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatDuration: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
DurationUnit unit = DurationUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FloatDuration(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing FloatDuration from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a FloatDuration based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatDuration; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatDuration of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatDuration: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatDuration: empty unitString");
DurationUnit unit = DurationUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatDuration(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatDuration with unit " + unitString);
}
/**
* Calculate the division of FloatDuration and FloatDuration, which results in a FloatDimensionless scalar.
* @param v FloatDuration; scalar
* @return FloatDimensionless; scalar as a division of FloatDuration and FloatDuration
*/
public final FloatDimensionless divide(final FloatDuration v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFrequency, which results in a FloatDimensionless scalar.
* @param v FloatDuration; scalar
* @return FloatDimensionless; scalar as a multiplication of FloatDuration and FloatFrequency
*/
public final FloatDimensionless times(final FloatFrequency v)
{
return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatElectricalCurrent, which results in a FloatElectricalCharge
* scalar.
* @param v FloatDuration; scalar
* @return FloatElectricalCharge; scalar as a multiplication of FloatDuration and FloatElectricalCurrent
*/
public final FloatElectricalCharge times(final FloatElectricalCurrent v)
{
return new FloatElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFlowMass, which results in a FloatMass scalar.
* @param v FloatDuration; scalar
* @return FloatMass; scalar as a multiplication of FloatDuration and FloatFlowMass
*/
public final FloatMass times(final FloatFlowMass v)
{
return new FloatMass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFlowVolume, which results in a FloatVolume scalar.
* @param v FloatDuration; scalar
* @return FloatVolume; scalar as a multiplication of FloatDuration and FloatFlowVolume
*/
public final FloatVolume times(final FloatFlowVolume v)
{
return new FloatVolume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatAcceleration, which results in a FloatSpeed scalar.
* @param v FloatDuration; scalar
* @return FloatSpeed; scalar as a multiplication of FloatDuration and FloatAcceleration
*/
public final FloatSpeed times(final FloatAcceleration v)
{
return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatPower, which results in a FloatEnergy scalar.
* @param v FloatDuration; scalar
* @return FloatEnergy; scalar as a multiplication of FloatDuration and FloatPower
*/
public final FloatEnergy times(final FloatPower v)
{
return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatSpeed, which results in a FloatLength scalar.
* @param v FloatDuration; scalar
* @return FloatLength; scalar as a multiplication of FloatDuration and FloatSpeed
*/
public final FloatLength times(final FloatSpeed v)
{
return new FloatLength(this.si * v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatElectricalPotential, which results in a FloatMagneticFlux scalar.
* @param v FloatDuration; scalar
* @return FloatMagneticFlux; scalar as a multiplication of FloatDuration and FloatElectricalPotential
*/
public final FloatMagneticFlux times(final FloatElectricalPotential v)
{
return new FloatMagneticFlux(this.si * v.si, MagneticFluxUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatElectricalResistance, which results in a FloatElectricalInductance
* scalar.
* @param v FloatDuration; scalar
* @return FloatElectricalInductance; scalar as a multiplication of FloatDuration and FloatElectricalResistance
*/
public final FloatElectricalInductance times(final FloatElectricalResistance v)
{
return new FloatElectricalInductance(this.si * v.si, ElectricalInductanceUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatElectricalConductance, which results in a
* FloatElectricalCapacitance scalar.
* @param v FloatDuration; scalar
* @return FloatElectricalCapacitance; scalar as a multiplication of FloatDuration and FloatElectricalConductance
*/
public final FloatElectricalCapacitance times(final FloatElectricalConductance v)
{
return new FloatElectricalCapacitance(this.si * v.si, ElectricalCapacitanceUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatAngularVelocity, which results in a FloatAngle scalar.
* @param v FloatDuration; scalar
* @return FloatAngle; scalar as a multiplication of FloatDuration and FloatAngularVelocity
*/
public final FloatAngle times(final FloatAngularVelocity v)
{
return new FloatAngle(this.si * v.si, AngleUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatAngularAcceleration, which results in a FloatAngularVelocity
* scalar.
* @param v FloatDuration; scalar
* @return FloatAngularVelocity; scalar as a multiplication of FloatDuration and FloatAngularAcceleration
*/
public final FloatAngularVelocity times(final FloatAngularAcceleration v)
{
return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
@Override
public FloatFrequency reciprocal()
{
return FloatFrequency.instantiateSI(1.0f / this.si);
}
}