FloatEnergyMatrix.java
package org.djunits.value.vfloat.matrix;
import java.util.Collection;
import org.djunits.unit.EnergyUnit;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.matrix.base.FloatMatrixRel;
import org.djunits.value.vfloat.matrix.base.FloatSparseValue;
import org.djunits.value.vfloat.matrix.data.FloatMatrixData;
import org.djunits.value.vfloat.scalar.FloatEnergy;
import org.djunits.value.vfloat.vector.FloatEnergyVector;
import org.djunits.value.vfloat.vector.data.FloatVectorData;
import jakarta.annotation.Generated;
/**
* Immutable FloatFloatEnergyMatrix, a matrix of values with a EnergyUnit.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatEnergyMatrix extends FloatMatrixRel<EnergyUnit, FloatEnergy, FloatEnergyVector, FloatEnergyMatrix>
{
/** */
private static final long serialVersionUID = 20151109L;
/**
* Construct a FloatEnergyMatrix from an internal data object.
* @param data FloatMatrixData; the internal data object for the matrix
* @param displayUnit EnergyUnit; the display unit of the matrix data
*/
public FloatEnergyMatrix(final FloatMatrixData data, final EnergyUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH float[][] */
/**
* Construct a FloatEnergyMatrix from a float[][] object. The float values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data float[][]; the data for the matrix, expressed in the displayUnit
* @param displayUnit EnergyUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final float[][] data, final EnergyUnit displayUnit, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct a FloatEnergyMatrix from a float[][] object. The float values are expressed in the displayUnit. Assume that the
* StorageType is DENSE since we offer the data as an array of an array.
* @param data float[][]; the data for the matrix
* @param displayUnit EnergyUnit; the unit of the values in the data array, and display unit when printing
*/
public FloatEnergyMatrix(final float[][] data, final EnergyUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatEnergyMatrix from a float[][] object with SI-unit values.
* @param data float[][]; the data for the matrix, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final float[][] data, final StorageType storageType)
{
this(data, EnergyUnit.SI, storageType);
}
/**
* Construct a FloatEnergyMatrix from a float[][] object with SI-unit values. Assume that the StorageType is DENSE since we
* offer the data as an array of an array.
* @param data float[][]; the data for the matrix, in SI units
*/
public FloatEnergyMatrix(final float[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Energy[][] */
/**
* Construct a FloatEnergyMatrix from an array of an array of FloatEnergy objects. The FloatEnergy values are each expressed
* in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data FloatEnergy[][]; the data for the matrix
* @param displayUnit EnergyUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final FloatEnergy[][] data, final EnergyUnit displayUnit, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, storageType), displayUnit);
}
/**
* Construct a FloatEnergyMatrix from an array of an array of FloatEnergy objects. The FloatEnergy values are each expressed
* in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume
* that the StorageType is DENSE since we offer the data as an array of an array.
* @param data FloatEnergy[][]; the data for the matrix
* @param displayUnit EnergyUnit; the display unit of the values when printing
*/
public FloatEnergyMatrix(final FloatEnergy[][] data, final EnergyUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatEnergyMatrix from an array of an array of FloatEnergy objects. The FloatEnergy values are each expressed
* in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer
* the data as an array of an array.
* @param data FloatEnergy[][]; the data for the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final FloatEnergy[][] data, final StorageType storageType)
{
this(data, EnergyUnit.SI, storageType);
}
/**
* Construct a FloatEnergyMatrix from an array of an array of FloatEnergy objects. The FloatEnergy values are each expressed
* in their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that
* the StorageType is DENSE since we offer the data as an array of an array.
* @param data FloatEnergy[][]; the data for the matrix
*/
public FloatEnergyMatrix(final FloatEnergy[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Collection<FloatSparseValue> */
/**
* Construct a FloatEnergyMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the unit
* in which the values in the collection are expressed, as well as the unit in which they will be printed.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit EnergyUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final Collection<FloatSparseValue<EnergyUnit, FloatEnergy>> data, final EnergyUnit displayUnit,
final int rows, final int cols, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, rows, cols, storageType), displayUnit);
}
/**
* Construct a FloatEnergyMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the unit
* in which the values in the collection are expressed, as well as the unit in which they will be printed. Assume the
* storage type is SPARSE, since we offer the data as a collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit EnergyUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatEnergyMatrix(final Collection<FloatSparseValue<EnergyUnit, FloatEnergy>> data, final EnergyUnit displayUnit,
final int rows, final int cols)
{
this(data, displayUnit, rows, cols, StorageType.SPARSE);
}
/**
* Construct a FloatEnergyMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the unit
* in which the values in the collection are expressed, as well as the unit in which they will be printed. Use the SI unit
* or base unit as the displayUnit.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatEnergyMatrix(final Collection<FloatSparseValue<EnergyUnit, FloatEnergy>> data, final int rows, final int cols,
final StorageType storageType)
{
this(data, EnergyUnit.SI, rows, cols, storageType);
}
/**
* Construct a FloatEnergyMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the unit
* in which the values in the collection are expressed, as well as the unit in which they will be printed. Use the SI unit
* or base unit as the displayUnit. Assume the storage type is SPARSE, since we offer the data as a collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatEnergyMatrix(final Collection<FloatSparseValue<EnergyUnit, FloatEnergy>> data, final int rows, final int cols)
{
this(data, EnergyUnit.SI, rows, cols, StorageType.SPARSE);
}
@Override
public Class<FloatEnergy> getScalarClass()
{
return FloatEnergy.class;
}
@Override
public Class<FloatEnergyVector> getVectorClass()
{
return FloatEnergyVector.class;
}
@Override
public FloatEnergyMatrix instantiateMatrix(final FloatMatrixData fmd, final EnergyUnit displayUnit)
{
return new FloatEnergyMatrix(fmd, displayUnit);
}
@Override
public FloatEnergyVector instantiateVector(final FloatVectorData fvd, final EnergyUnit displayUnit)
{
return new FloatEnergyVector(fvd, displayUnit);
}
@Override
public FloatEnergy instantiateScalarSI(final float valueSI, final EnergyUnit displayUnit)
{
FloatEnergy result = FloatEnergy.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}