FloatAngularAccelerationMatrix.java
package org.djunits.value.vfloat.matrix;
import java.util.Collection;
import org.djunits.unit.AngularAccelerationUnit;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.matrix.base.FloatMatrixRel;
import org.djunits.value.vfloat.matrix.base.FloatSparseValue;
import org.djunits.value.vfloat.matrix.data.FloatMatrixData;
import org.djunits.value.vfloat.scalar.FloatAngularAcceleration;
import org.djunits.value.vfloat.vector.FloatAngularAccelerationVector;
import org.djunits.value.vfloat.vector.data.FloatVectorData;
import jakarta.annotation.Generated;
/**
* Immutable FloatFloatAngularAccelerationMatrix, a matrix of values with a AngularAccelerationUnit.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatAngularAccelerationMatrix extends FloatMatrixRel<AngularAccelerationUnit, FloatAngularAcceleration,
FloatAngularAccelerationVector, FloatAngularAccelerationMatrix>
{
/** */
private static final long serialVersionUID = 20151109L;
/**
* Construct a FloatAngularAccelerationMatrix from an internal data object.
* @param data FloatMatrixData; the internal data object for the matrix
* @param displayUnit AngularAccelerationUnit; the display unit of the matrix data
*/
public FloatAngularAccelerationMatrix(final FloatMatrixData data, final AngularAccelerationUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH float[][] */
/**
* Construct a FloatAngularAccelerationMatrix from a float[][] object. The float values are expressed in the displayUnit,
* and will be printed using the displayUnit.
* @param data float[][]; the data for the matrix, expressed in the displayUnit
* @param displayUnit AngularAccelerationUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(final float[][] data, final AngularAccelerationUnit displayUnit,
final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct a FloatAngularAccelerationMatrix from a float[][] object. The float values are expressed in the displayUnit.
* Assume that the StorageType is DENSE since we offer the data as an array of an array.
* @param data float[][]; the data for the matrix
* @param displayUnit AngularAccelerationUnit; the unit of the values in the data array, and display unit when printing
*/
public FloatAngularAccelerationMatrix(final float[][] data, final AngularAccelerationUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatAngularAccelerationMatrix from a float[][] object with SI-unit values.
* @param data float[][]; the data for the matrix, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(final float[][] data, final StorageType storageType)
{
this(data, AngularAccelerationUnit.SI, storageType);
}
/**
* Construct a FloatAngularAccelerationMatrix from a float[][] object with SI-unit values. Assume that the StorageType is
* DENSE since we offer the data as an array of an array.
* @param data float[][]; the data for the matrix, in SI units
*/
public FloatAngularAccelerationMatrix(final float[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH AngularAcceleration[][] */
/**
* Construct a FloatAngularAccelerationMatrix from an array of an array of FloatAngularAcceleration objects. The
* FloatAngularAcceleration values are each expressed in their own unit, but will be internally stored as SI values, all
* expressed in the displayUnit when printing.
* @param data FloatAngularAcceleration[][]; the data for the matrix
* @param displayUnit AngularAccelerationUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(final FloatAngularAcceleration[][] data, final AngularAccelerationUnit displayUnit,
final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, storageType), displayUnit);
}
/**
* Construct a FloatAngularAccelerationMatrix from an array of an array of FloatAngularAcceleration objects. The
* FloatAngularAcceleration values are each expressed in their own unit, but will be internally stored as SI values, all
* expressed in the displayUnit when printing. Assume that the StorageType is DENSE since we offer the data as an array of
* an array.
* @param data FloatAngularAcceleration[][]; the data for the matrix
* @param displayUnit AngularAccelerationUnit; the display unit of the values when printing
*/
public FloatAngularAccelerationMatrix(final FloatAngularAcceleration[][] data, final AngularAccelerationUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatAngularAccelerationMatrix from an array of an array of FloatAngularAcceleration objects. The
* FloatAngularAcceleration values are each expressed in their own unit, but will be internally stored as SI values, and
* expressed using SI units when printing. since we offer the data as an array of an array.
* @param data FloatAngularAcceleration[][]; the data for the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(final FloatAngularAcceleration[][] data, final StorageType storageType)
{
this(data, AngularAccelerationUnit.SI, storageType);
}
/**
* Construct a FloatAngularAccelerationMatrix from an array of an array of FloatAngularAcceleration objects. The
* FloatAngularAcceleration values are each expressed in their own unit, but will be internally stored as SI values, and
* expressed using SI units when printing. Assume that the StorageType is DENSE since we offer the data as an array of an
* array.
* @param data FloatAngularAcceleration[][]; the data for the matrix
*/
public FloatAngularAccelerationMatrix(final FloatAngularAcceleration[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Collection<FloatSparseValue> */
/**
* Construct a FloatAngularAccelerationMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
* indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
* printed.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit AngularAccelerationUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(
final Collection<FloatSparseValue<AngularAccelerationUnit, FloatAngularAcceleration>> data,
final AngularAccelerationUnit displayUnit, final int rows, final int cols, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, rows, cols, storageType), displayUnit);
}
/**
* Construct a FloatAngularAccelerationMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
* indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
* printed. Assume the storage type is SPARSE, since we offer the data as a collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit AngularAccelerationUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatAngularAccelerationMatrix(
final Collection<FloatSparseValue<AngularAccelerationUnit, FloatAngularAcceleration>> data,
final AngularAccelerationUnit displayUnit, final int rows, final int cols)
{
this(data, displayUnit, rows, cols, StorageType.SPARSE);
}
/**
* Construct a FloatAngularAccelerationMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
* indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
* printed. Use the SI unit or base unit as the displayUnit.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatAngularAccelerationMatrix(
final Collection<FloatSparseValue<AngularAccelerationUnit, FloatAngularAcceleration>> data, final int rows,
final int cols, final StorageType storageType)
{
this(data, AngularAccelerationUnit.SI, rows, cols, storageType);
}
/**
* Construct a FloatAngularAccelerationMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit
* indicates the unit in which the values in the collection are expressed, as well as the unit in which they will be
* printed. Use the SI unit or base unit as the displayUnit. Assume the storage type is SPARSE, since we offer the data as a
* collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatAngularAccelerationMatrix(
final Collection<FloatSparseValue<AngularAccelerationUnit, FloatAngularAcceleration>> data, final int rows,
final int cols)
{
this(data, AngularAccelerationUnit.SI, rows, cols, StorageType.SPARSE);
}
@Override
public Class<FloatAngularAcceleration> getScalarClass()
{
return FloatAngularAcceleration.class;
}
@Override
public Class<FloatAngularAccelerationVector> getVectorClass()
{
return FloatAngularAccelerationVector.class;
}
@Override
public FloatAngularAccelerationMatrix instantiateMatrix(final FloatMatrixData fmd,
final AngularAccelerationUnit displayUnit)
{
return new FloatAngularAccelerationMatrix(fmd, displayUnit);
}
@Override
public FloatAngularAccelerationVector instantiateVector(final FloatVectorData fvd,
final AngularAccelerationUnit displayUnit)
{
return new FloatAngularAccelerationVector(fvd, displayUnit);
}
@Override
public FloatAngularAcceleration instantiateScalarSI(final float valueSI, final AngularAccelerationUnit displayUnit)
{
FloatAngularAcceleration result = FloatAngularAcceleration.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}