FlowMassVector.java
package org.djunits.value.vdouble.vector;
import java.util.List;
import java.util.Map;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.scale.IdentityScale;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vdouble.scalar.FlowMass;
import org.djunits.value.vdouble.vector.base.DoubleVectorRel;
import org.djunits.value.vdouble.vector.data.DoubleVectorData;
import jakarta.annotation.Generated;
/**
* Double FlowMassVector, a vector of values with a FlowMassUnit.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FlowMassVector extends DoubleVectorRel<FlowMassUnit, FlowMass, FlowMassVector>
{
/** */
private static final long serialVersionUID = 20190905L;
/**
* Construct an FlowMassVector from an internal data object.
* @param data DoubleVectorData; the internal data object for the vector
* @param displayUnit FlowMassUnit; the display unit of the vector data
*/
public FlowMassVector(final DoubleVectorData data, final FlowMassUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH double[] */
/**
* Construct an FlowMassVector from a double[] object. The double values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data double[]; the data for the vector, expressed in the displayUnit
* @param displayUnit FlowMassUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final double[] data, final FlowMassUnit displayUnit, final StorageType storageType)
{
this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct an FlowMassVector from a double[] object. The double values are expressed in the displayUnit. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data double[]; the data for the vector
* @param displayUnit FlowMassUnit; the unit of the values in the data array, and display unit when printing
*/
public FlowMassVector(final double[] data, final FlowMassUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an FlowMassVector from a double[] object with SI-unit values.
* @param data double[]; the data for the vector, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final double[] data, final StorageType storageType)
{
this(data, FlowMassUnit.SI, storageType);
}
/**
* Construct an FlowMassVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we
* offer the data as an array.
* @param data double[]; the data for the vector, in SI units
*/
public FlowMassVector(final double[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH FlowMass[] */
/**
* Construct an FlowMassVector from an array of FlowMass objects. The FlowMass values are each expressed in their own unit,
* but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data FlowMass[]; the data for the vector
* @param displayUnit FlowMassUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final FlowMass[] data, final FlowMassUnit displayUnit, final StorageType storageType)
{
this(DoubleVectorData.instantiate(data, storageType), displayUnit);
}
/**
* Construct an FlowMassVector from an array of FlowMass objects. The FlowMass values are each expressed in their own unit,
* but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the StorageType
* is DENSE since we offer the data as an array.
* @param data FlowMass[]; the data for the vector
* @param displayUnit FlowMassUnit; the display unit of the values when printing
*/
public FlowMassVector(final FlowMass[] data, final FlowMassUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an FlowMassVector from an array of FlowMass objects. The FlowMass values are each expressed in their own unit,
* but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data as an
* array.
* @param data FlowMass[]; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final FlowMass[] data, final StorageType storageType)
{
this(data, FlowMassUnit.SI, storageType);
}
/**
* Construct an FlowMassVector from an array of FlowMass objects. The FlowMass values are each expressed in their own unit,
* but will be internally stored as SI values, and expressed using SI units when printing. Assume that the StorageType is
* DENSE since we offer the data as an array.
* @param data FlowMass[]; the data for the vector
*/
public FlowMassVector(final FlowMass[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH List<Double> or List<FlowMass> */
/**
* Construct an FlowMassVector from a list of Number objects or a list of FlowMass objects. Note that the displayUnit has a
* different meaning depending on whether the list contains Number objects (e.g., Double objects) or FlowMass objects. In
* case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed,
* as well as the unit in which they will be printed. In case the list contains FlowMass objects, each FlowMass has its own
* unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base
* values, and expressed using the display unit or base unit when printing.
* @param data List<Double> or List<FlowMass>; the data for the vector
* @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Double> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final List<? extends Number> data, final FlowMassUnit displayUnit, final StorageType storageType)
{
this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType)
: data.get(0) instanceof FlowMass ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType)
: DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct an FlowMassVector from a list of Number objects or a list of FlowMass objects. Note that the displayUnit has a
* different meaning depending on whether the list contains Number objects (e.g., Double objects) or FlowMass objects. In
* case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are expressed,
* as well as the unit in which they will be printed. In case the list contains FlowMass objects, each FlowMass has its own
* unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or base
* values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE since we offer
* the data as a List.
* @param data List<Double> or List<FlowMass>; the data for the vector
* @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Double> or List<Number> in general
*/
public FlowMassVector(final List<? extends Number> data, final FlowMassUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an FlowMassVector from a list of Number objects or a list of FlowMass objects. When data contains numbers such
* as Double, assume that they are expressed using SI units. When the data consists of FlowMass objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Double> or List<FlowMass>; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final List<? extends Number> data, final StorageType storageType)
{
this(data, FlowMassUnit.SI, storageType);
}
/**
* Construct an FlowMassVector from a list of Number objects or a list of FlowMass objects. When data contains numbers such
* as Double, assume that they are expressed using SI units. When the data consists of FlowMass objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is DENSE
* since we offer the data as a List.
* @param data List<Double> or List<FlowMass>; the data for the vector
*/
public FlowMassVector(final List<? extends Number> data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, FlowMass> */
/**
* Construct an FlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
* FlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
* the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different
* meaning depending on whether the map contains Number objects (e.g., Double objects) or FlowMass objects. In case the map
* contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the
* unit in which they will be printed. In case the map contains FlowMass objects, each FlowMass has its own unit, and the
* displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and
* expressed using the display unit or base unit when printing.
* @param data Map<Integer, Double> or Map<Integer, FlowMass>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Double> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final Map<Integer, ? extends Number> data, final int size, final FlowMassUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: data.values().iterator().next() instanceof FlowMass
? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct an FlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
* FlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
* the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a different
* meaning depending on whether the map contains Number objects (e.g., Double objects) or FlowMass objects. In case the map
* contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as well as the
* unit in which they will be printed. In case the map contains FlowMass objects, each FlowMass has its own unit, and the
* displayUnit is just used for printing. The values but will always be internally stored as SI values or base values, and
* expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer the data as
* a Map.
* @param data Map<Integer, Double> or Map<Integer, FlowMass>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit FlowMassUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Double> or List<Number> in general
*/
public FlowMassVector(final Map<Integer, ? extends Number> data, final int size, final FlowMassUnit displayUnit)
{
this(data, size, displayUnit, StorageType.SPARSE);
}
/**
* Construct an FlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
* FlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
* the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double,
* assume that they are expressed using SI units. When the data consists of FlowMass objects, they each have their own unit,
* but will be printed using SI units or base units. The values but will always be internally stored as SI values or base
* values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Double> or Map<Integer, FlowMass>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FlowMassVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
{
this(data, size, FlowMassUnit.SI, storageType);
}
/**
* Construct an FlowMassVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to of
* FlowMass objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the size of
* the vector, since the largest index does not have to be part of the map. When data contains numbers such as Double,
* assume that they are expressed using SI units. When the data consists of FlowMass objects, they each have their own unit,
* but will be printed using SI units or base units. The values but will always be internally stored as SI values or base
* values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we offer
* the data as a Map.
* @param data Map<Integer, Double> or Map<Integer, FlowMass>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
*/
public FlowMassVector(final Map<Integer, ? extends Number> data, final int size)
{
this(data, size, StorageType.SPARSE);
}
/* ****************************** Other methods ****************************** */
@Override
public Class<FlowMass> getScalarClass()
{
return FlowMass.class;
}
@Override
public FlowMassVector instantiateVector(final DoubleVectorData dvd, final FlowMassUnit displayUnit)
{
return new FlowMassVector(dvd, displayUnit);
}
@Override
public FlowMass instantiateScalarSI(final double valueSI, final FlowMassUnit displayUnit)
{
FlowMass result = FlowMass.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}