LuminousFlux.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.IlluminanceUnit;
import org.djunits.unit.LuminousFluxUnit;
import org.djunits.unit.LuminousIntensityUnit;
import org.djunits.unit.SolidAngleUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the LuminousFlux DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class LuminousFlux extends DoubleScalarRel<LuminousFluxUnit, LuminousFlux>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final LuminousFlux ZERO = new LuminousFlux(0.0, LuminousFluxUnit.SI);
/** Constant with value one. */
public static final LuminousFlux ONE = new LuminousFlux(1.0, LuminousFluxUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final LuminousFlux NaN = new LuminousFlux(Double.NaN, LuminousFluxUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final LuminousFlux POSITIVE_INFINITY = new LuminousFlux(Double.POSITIVE_INFINITY, LuminousFluxUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final LuminousFlux NEGATIVE_INFINITY = new LuminousFlux(Double.NEGATIVE_INFINITY, LuminousFluxUnit.SI);
/** Constant with value MAX_VALUE. */
public static final LuminousFlux POS_MAXVALUE = new LuminousFlux(Double.MAX_VALUE, LuminousFluxUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final LuminousFlux NEG_MAXVALUE = new LuminousFlux(-Double.MAX_VALUE, LuminousFluxUnit.SI);
/**
* Construct LuminousFlux scalar.
* @param value double; the double value
* @param unit LuminousFluxUnit; unit for the double value
*/
public LuminousFlux(final double value, final LuminousFluxUnit unit)
{
super(value, unit);
}
/**
* Construct LuminousFlux scalar.
* @param value LuminousFlux; Scalar from which to construct this instance
*/
public LuminousFlux(final LuminousFlux value)
{
super(value);
}
@Override
public final LuminousFlux instantiateRel(final double value, final LuminousFluxUnit unit)
{
return new LuminousFlux(value, unit);
}
/**
* Construct LuminousFlux scalar.
* @param value double; the double value in SI units
* @return LuminousFlux; the new scalar with the SI value
*/
public static final LuminousFlux instantiateSI(final double value)
{
return new LuminousFlux(value, LuminousFluxUnit.SI);
}
/**
* Interpolate between two values.
* @param zero LuminousFlux; the low value
* @param one LuminousFlux; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return LuminousFlux; a Scalar at the ratio between
*/
public static LuminousFlux interpolate(final LuminousFlux zero, final LuminousFlux one, final double ratio)
{
return new LuminousFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 LuminousFlux; the first scalar
* @param r2 LuminousFlux; the second scalar
* @return LuminousFlux; the maximum value of two relative scalars
*/
public static LuminousFlux max(final LuminousFlux r1, final LuminousFlux r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 LuminousFlux; the first scalar
* @param r2 LuminousFlux; the second scalar
* @param rn LuminousFlux...; the other scalars
* @return LuminousFlux; the maximum value of more than two relative scalars
*/
public static LuminousFlux max(final LuminousFlux r1, final LuminousFlux r2, final LuminousFlux... rn)
{
LuminousFlux maxr = r1.gt(r2) ? r1 : r2;
for (LuminousFlux r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 LuminousFlux; the first scalar
* @param r2 LuminousFlux; the second scalar
* @return LuminousFlux; the minimum value of two relative scalars
*/
public static LuminousFlux min(final LuminousFlux r1, final LuminousFlux r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 LuminousFlux; the first scalar
* @param r2 LuminousFlux; the second scalar
* @param rn LuminousFlux...; the other scalars
* @return LuminousFlux; the minimum value of more than two relative scalars
*/
public static LuminousFlux min(final LuminousFlux r1, final LuminousFlux r2, final LuminousFlux... rn)
{
LuminousFlux minr = r1.lt(r2) ? r1 : r2;
for (LuminousFlux r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a LuminousFlux representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a LuminousFlux
* @return LuminousFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static LuminousFlux valueOf(final String text)
{
Throw.whenNull(text, "Error parsing LuminousFlux: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing LuminousFlux: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
LuminousFluxUnit unit = LuminousFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new LuminousFlux(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing LuminousFlux from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a LuminousFlux based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return LuminousFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static LuminousFlux of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing LuminousFlux: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing LuminousFlux: empty unitString");
LuminousFluxUnit unit = LuminousFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new LuminousFlux(value, unit);
}
throw new IllegalArgumentException("Error parsing LuminousFlux with unit " + unitString);
}
/**
* Calculate the division of LuminousFlux and LuminousFlux, which results in a Dimensionless scalar.
* @param v LuminousFlux; scalar
* @return Dimensionless; scalar as a division of LuminousFlux and LuminousFlux
*/
public final Dimensionless divide(final LuminousFlux v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of LuminousFlux and Area, which results in a Illuminance scalar.
* @param v LuminousFlux; scalar
* @return Illuminance; scalar as a division of LuminousFlux and Area
*/
public final Illuminance divide(final Area v)
{
return new Illuminance(this.si / v.si, IlluminanceUnit.SI);
}
/**
* Calculate the division of LuminousFlux and Illuminance, which results in a Area scalar.
* @param v LuminousFlux; scalar
* @return Area; scalar as a division of LuminousFlux and Illuminance
*/
public final Area divide(final Illuminance v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of LuminousFlux and LuminousIntensity, which results in a SolidAngle scalar.
* @param v LuminousFlux; scalar
* @return SolidAngle; scalar as a division of LuminousFlux and LuminousIntensity
*/
public final SolidAngle divide(final LuminousIntensity v)
{
return new SolidAngle(this.si / v.si, SolidAngleUnit.SI);
}
/**
* Calculate the division of LuminousFlux and SolidAngle, which results in a LuminousIntensity scalar.
* @param v LuminousFlux; scalar
* @return LuminousIntensity; scalar as a division of LuminousFlux and SolidAngle
*/
public final LuminousIntensity divide(final SolidAngle v)
{
return new LuminousIntensity(this.si / v.si, LuminousIntensityUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}