FlowVolume.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.FlowVolumeUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FlowVolume DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FlowVolume extends DoubleScalarRel<FlowVolumeUnit, FlowVolume>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final FlowVolume ZERO = new FlowVolume(0.0, FlowVolumeUnit.SI);
/** Constant with value one. */
public static final FlowVolume ONE = new FlowVolume(1.0, FlowVolumeUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FlowVolume NaN = new FlowVolume(Double.NaN, FlowVolumeUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FlowVolume POSITIVE_INFINITY = new FlowVolume(Double.POSITIVE_INFINITY, FlowVolumeUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FlowVolume NEGATIVE_INFINITY = new FlowVolume(Double.NEGATIVE_INFINITY, FlowVolumeUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FlowVolume POS_MAXVALUE = new FlowVolume(Double.MAX_VALUE, FlowVolumeUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FlowVolume NEG_MAXVALUE = new FlowVolume(-Double.MAX_VALUE, FlowVolumeUnit.SI);
/**
* Construct FlowVolume scalar.
* @param value double; the double value
* @param unit FlowVolumeUnit; unit for the double value
*/
public FlowVolume(final double value, final FlowVolumeUnit unit)
{
super(value, unit);
}
/**
* Construct FlowVolume scalar.
* @param value FlowVolume; Scalar from which to construct this instance
*/
public FlowVolume(final FlowVolume value)
{
super(value);
}
@Override
public final FlowVolume instantiateRel(final double value, final FlowVolumeUnit unit)
{
return new FlowVolume(value, unit);
}
/**
* Construct FlowVolume scalar.
* @param value double; the double value in SI units
* @return FlowVolume; the new scalar with the SI value
*/
public static final FlowVolume instantiateSI(final double value)
{
return new FlowVolume(value, FlowVolumeUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FlowVolume; the low value
* @param one FlowVolume; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return FlowVolume; a Scalar at the ratio between
*/
public static FlowVolume interpolate(final FlowVolume zero, final FlowVolume one, final double ratio)
{
return new FlowVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @return FlowVolume; the maximum value of two relative scalars
*/
public static FlowVolume max(final FlowVolume r1, final FlowVolume r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @param rn FlowVolume...; the other scalars
* @return FlowVolume; the maximum value of more than two relative scalars
*/
public static FlowVolume max(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
{
FlowVolume maxr = r1.gt(r2) ? r1 : r2;
for (FlowVolume r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @return FlowVolume; the minimum value of two relative scalars
*/
public static FlowVolume min(final FlowVolume r1, final FlowVolume r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FlowVolume; the first scalar
* @param r2 FlowVolume; the second scalar
* @param rn FlowVolume...; the other scalars
* @return FlowVolume; the minimum value of more than two relative scalars
*/
public static FlowVolume min(final FlowVolume r1, final FlowVolume r2, final FlowVolume... rn)
{
FlowVolume minr = r1.lt(r2) ? r1 : r2;
for (FlowVolume r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FlowVolume representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FlowVolume
* @return FlowVolume; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FlowVolume valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FlowVolume: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FlowVolume(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing FlowVolume from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a FlowVolume based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FlowVolume; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FlowVolume of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FlowVolume: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FlowVolume: empty unitString");
FlowVolumeUnit unit = FlowVolumeUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FlowVolume(value, unit);
}
throw new IllegalArgumentException("Error parsing FlowVolume with unit " + unitString);
}
/**
* Calculate the division of FlowVolume and FlowVolume, which results in a Dimensionless scalar.
* @param v FlowVolume; scalar
* @return Dimensionless; scalar as a division of FlowVolume and FlowVolume
*/
public final Dimensionless divide(final FlowVolume v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FlowVolume and Duration, which results in a Volume scalar.
* @param v FlowVolume; scalar
* @return Volume; scalar as a multiplication of FlowVolume and Duration
*/
public final Volume times(final Duration v)
{
return new Volume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FlowVolume and Frequency, which results in a Volume scalar.
* @param v FlowVolume; scalar
* @return Volume; scalar as a division of FlowVolume and Frequency
*/
public final Volume divide(final Frequency v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FlowVolume and Volume, which results in a Frequency scalar.
* @param v FlowVolume; scalar
* @return Frequency; scalar as a division of FlowVolume and Volume
*/
public final Frequency divide(final Volume v)
{
return new Frequency(this.si / v.si, FrequencyUnit.SI);
}
/**
* Calculate the division of FlowVolume and Area, which results in a Speed scalar.
* @param v FlowVolume; scalar
* @return Speed; scalar as a division of FlowVolume and Area
*/
public final Speed divide(final Area v)
{
return new Speed(this.si / v.si, SpeedUnit.SI);
}
/**
* Calculate the division of FlowVolume and Speed, which results in a Area scalar.
* @param v FlowVolume; scalar
* @return Area; scalar as a division of FlowVolume and Speed
*/
public final Area divide(final Speed v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the multiplication of FlowVolume and Density, which results in a FlowMass scalar.
* @param v FlowVolume; scalar
* @return FlowMass; scalar as a multiplication of FlowVolume and Density
*/
public final FlowMass times(final Density v)
{
return new FlowMass(this.si * v.si, FlowMassUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}