FloatTorqueVector.java
package org.djunits.value.vfloat.vector;
import java.util.List;
import java.util.Map;
import org.djunits.unit.TorqueUnit;
import org.djunits.unit.scale.IdentityScale;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.scalar.FloatTorque;
import org.djunits.value.vfloat.vector.base.FloatVectorRel;
import org.djunits.value.vfloat.vector.data.FloatVectorData;
import jakarta.annotation.Generated;
/**
* Immutable Float FloatTorqueVector, a vector of values with a TorqueUnit.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatTorqueVector extends FloatVectorRel<TorqueUnit, FloatTorque, FloatTorqueVector>
{
/** */
private static final long serialVersionUID = 20190905L;
/**
* Construct a FloatTorqueVector from an internal data object.
* @param data FloatVectorData; the internal data object for the vector
* @param displayUnit TorqueUnit; the display unit of the vector data
*/
public FloatTorqueVector(final FloatVectorData data, final TorqueUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH float[] */
/**
* Construct a FloatTorqueVector from a float[] object. The Float values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data float[]; the data for the vector, expressed in the displayUnit
* @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final float[] data, final TorqueUnit displayUnit, final StorageType storageType)
{
this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct a FloatTorqueVector from a float[] object. The Float values are expressed in the displayUnit. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data float[]; the data for the vector
* @param displayUnit TorqueUnit; the unit of the values in the data array, and display unit when printing
*/
public FloatTorqueVector(final float[] data, final TorqueUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatTorqueVector from a float[] object with SI-unit values.
* @param data float[]; the data for the vector, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final float[] data, final StorageType storageType)
{
this(data, TorqueUnit.SI, storageType);
}
/**
* Construct a FloatTorqueVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we
* offer the data as an array.
* @param data float[]; the data for the vector, in SI units
*/
public FloatTorqueVector(final float[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH FloatTorque[] */
/**
* Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their
* own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data FloatTorque[]; the data for the vector
* @param displayUnit TorqueUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final FloatTorque[] data, final TorqueUnit displayUnit, final StorageType storageType)
{
this(FloatVectorData.instantiate(data, storageType), displayUnit);
}
/**
* Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their
* own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data FloatTorque[]; the data for the vector
* @param displayUnit TorqueUnit; the display unit of the values when printing
*/
public FloatTorqueVector(final FloatTorque[] data, final TorqueUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their
* own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer the data
* as an array.
* @param data FloatTorque[]; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final FloatTorque[] data, final StorageType storageType)
{
this(data, TorqueUnit.SI, storageType);
}
/**
* Construct a FloatTorqueVector from an array of FloatTorque objects. The FloatTorque values are each expressed in their
* own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data FloatTorque[]; the data for the vector
*/
public FloatTorqueVector(final FloatTorque[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH List<Float> or List<Torque> */
/**
* Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. Note that the displayUnit
* has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatTorque
* objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are
* expressed, as well as the unit in which they will be printed. In case the list contains FloatTorque objects, each
* FloatTorque has its own unit, and the displayUnit is just used for printing. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Float> or List<Torque>; the data for the vector
* @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit, final StorageType storageType)
{
this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType)
: data.get(0) instanceof FloatTorque ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType)
: FloatVectorData.instantiate(data, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. Note that the displayUnit
* has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or FloatTorque
* objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in the list are
* expressed, as well as the unit in which they will be printed. In case the list contains FloatTorque objects, each
* FloatTorque has its own unit, and the displayUnit is just used for printing. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
* type is DENSE since we offer the data as a List.
* @param data List<Float> or List<Torque>; the data for the vector
* @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
*/
public FloatTorqueVector(final List<? extends Number> data, final TorqueUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. When data contains numbers
* such as Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each
* have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as
* SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Float> or List<Torque>; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final List<? extends Number> data, final StorageType storageType)
{
this(data, TorqueUnit.SI, storageType);
}
/**
* Construct a FloatTorqueVector from a list of Number objects or a list of FloatTorque objects. When data contains numbers
* such as Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each
* have their own unit, but will be printed using SI units or base units. The values but will always be internally stored as
* SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is
* DENSE since we offer the data as a List.
* @param data List<Float> or List<Torque>; the data for the vector
*/
public FloatTorqueVector(final List<? extends Number> data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatTorque> */
/**
* Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
* of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
* size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatTorque objects. In
* case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
* well as the unit in which they will be printed. In case the map contains FloatTorque objects, each FloatTorque has its
* own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
* base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: data.values().iterator().next() instanceof FloatTorque
? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
* of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
* size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatTorque objects. In
* case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
* well as the unit in which they will be printed. In case the map contains FloatTorque objects, each FloatTorque has its
* own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
* base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we
* offer the data as a Map.
* @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit TorqueUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
*/
public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final TorqueUnit displayUnit)
{
this(data, size, displayUnit, StorageType.SPARSE);
}
/**
* Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
* of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
* size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each have their
* own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values
* or base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
{
this(data, size, TorqueUnit.SI, storageType);
}
/**
* Construct a FloatTorqueVector from a (sparse) map of index values to Number objects or a (sparse) map of index values to
* of FloatTorque objects. Using index values is particularly useful for sparse vectors. The size parameter indicates the
* size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Float, assume that they are expressed using SI units. When the data consists of FloatTorque objects, they each have their
* own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI values
* or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since
* we offer the data as a Map.
* @param data Map<Integer, Float> or Map<Integer, FloatTorque>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
*/
public FloatTorqueVector(final Map<Integer, ? extends Number> data, final int size)
{
this(data, size, StorageType.SPARSE);
}
/* ****************************** Other methods ****************************** */
@Override
public Class<FloatTorque> getScalarClass()
{
return FloatTorque.class;
}
@Override
public FloatTorqueVector instantiateVector(final FloatVectorData fvd, final TorqueUnit displayUnit)
{
return new FloatTorqueVector(fvd, displayUnit);
}
@Override
public FloatTorque instantiateScalarSI(final float valueSI, final TorqueUnit displayUnit)
{
FloatTorque result = FloatTorque.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}