FloatDirectionVector.java
package org.djunits.value.vfloat.vector;
import java.util.List;
import java.util.Map;
import org.djunits.unit.AngleUnit;
import org.djunits.unit.DirectionUnit;
import org.djunits.unit.scale.IdentityScale;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.scalar.FloatAngle;
import org.djunits.value.vfloat.scalar.FloatDirection;
import org.djunits.value.vfloat.vector.base.FloatVectorAbs;
import org.djunits.value.vfloat.vector.data.FloatVectorData;
import jakarta.annotation.Generated;
/**
* Absolute FloatDirection Vector.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatDirectionVector
extends FloatVectorAbs<DirectionUnit, FloatDirection, FloatDirectionVector, AngleUnit, FloatAngle, FloatAngleVector>
{
/** */
private static final long serialVersionUID = 20151003L;
/**
* Construct a FloatDirectionVector from an internal data object.
* @param data FloatVectorData; the internal data object for the vector
* @param displayUnit DirectionUnit; the display unit of the vector data
*/
public FloatDirectionVector(final FloatVectorData data, final DirectionUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH float[] */
/**
* Construct a FloatDirectionVector from a float[] object. The Float values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data float[]; the data for the vector, expressed in the displayUnit
* @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final float[] data, final DirectionUnit displayUnit, final StorageType storageType)
{
this(FloatVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct a FloatDirectionVector from a float[] object. The Float values are expressed in the displayUnit. Assume that
* the StorageType is DENSE since we offer the data as an array.
* @param data float[]; the data for the vector
* @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing
*/
public FloatDirectionVector(final float[] data, final DirectionUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatDirectionVector from a float[] object with SI-unit values.
* @param data float[]; the data for the vector, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final float[] data, final StorageType storageType)
{
this(data, DirectionUnit.DEFAULT, storageType);
}
/**
* Construct a FloatDirectionVector from a float[] object with SI-unit values. Assume that the StorageType is DENSE since we
* offer the data as an array.
* @param data float[]; the data for the vector, in SI units
*/
public FloatDirectionVector(final float[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH FloatDirection[] */
/**
* Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in
* their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data FloatDirection[]; the data for the vector
* @param displayUnit DirectionUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final FloatDirection[] data, final DirectionUnit displayUnit, final StorageType storageType)
{
this(FloatVectorData.instantiate(data, storageType), displayUnit);
}
/**
* Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in
* their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that
* the StorageType is DENSE since we offer the data as an array.
* @param data FloatDirection[]; the data for the vector
* @param displayUnit DirectionUnit; the display unit of the values when printing
*/
public FloatDirectionVector(final FloatDirection[] data, final DirectionUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in
* their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer
* the data as an array.
* @param data FloatDirection[]; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final FloatDirection[] data, final StorageType storageType)
{
this(data, DirectionUnit.DEFAULT, storageType);
}
/**
* Construct a FloatDirectionVector from an array of FloatDirection objects. The FloatDirection values are each expressed in
* their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data FloatDirection[]; the data for the vector
*/
public FloatDirectionVector(final FloatDirection[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH List<Float> or List<Direction> */
/**
* Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. Note that the
* displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
* FloatDirection objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
* in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDirection
* objects, each FloatDirection has its own unit, and the displayUnit is just used for printing. The values but will always
* be internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Float> or List<Direction>; the data for the vector
* @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final List<? extends Number> data, final DirectionUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? FloatVectorData.instantiate(new float[] {}, IdentityScale.SCALE, storageType)
: data.get(0) instanceof FloatDirection ? FloatVectorData.instantiate(data, IdentityScale.SCALE, storageType)
: FloatVectorData.instantiate(data, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. Note that the
* displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Float objects) or
* FloatDirection objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values
* in the list are expressed, as well as the unit in which they will be printed. In case the list contains FloatDirection
* objects, each FloatDirection has its own unit, and the displayUnit is just used for printing. The values but will always
* be internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume
* the storage type is DENSE since we offer the data as a List.
* @param data List<Float> or List<Direction>; the data for the vector
* @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
*/
public FloatDirectionVector(final List<? extends Number> data, final DirectionUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. When data contains
* numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects,
* they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Float> or List<Direction>; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final List<? extends Number> data, final StorageType storageType)
{
this(data, DirectionUnit.DEFAULT, storageType);
}
/**
* Construct a FloatDirectionVector from a list of Number objects or a list of FloatDirection objects. When data contains
* numbers such as Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects,
* they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
* type is DENSE since we offer the data as a List.
* @param data List<Float> or List<Direction>; the data for the vector
*/
public FloatDirectionVector(final List<? extends Number> data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Map<Integer, Float> or Map<Integer, FloatDirection> */
/**
* Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDirection objects.
* In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed,
* as well as the unit in which they will be printed. In case the map contains FloatDirection objects, each FloatDirection
* has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final DirectionUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: data.values().iterator().next() instanceof FloatDirection
? FloatVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: FloatVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Float objects) or FloatDirection objects.
* In case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed,
* as well as the unit in which they will be printed. In case the map contains FloatDirection objects, each FloatDirection
* has its own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
* since we offer the data as a Map.
* @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit DirectionUnit; the display unit of the vector data, and the unit of the data points when the data is
* expressed as List<Float> or List<Number> in general
*/
public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final DirectionUnit displayUnit)
{
this(data, size, displayUnit, StorageType.SPARSE);
}
/**
* Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
{
this(data, size, DirectionUnit.DEFAULT, storageType);
}
/**
* Construct a FloatDirectionVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of FloatDirection objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Float, assume that they are expressed using SI units. When the data consists of FloatDirection objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
* since we offer the data as a Map.
* @param data Map<Integer, Float> or Map<Integer, FloatDirection>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
*/
public FloatDirectionVector(final Map<Integer, ? extends Number> data, final int size)
{
this(data, size, StorageType.SPARSE);
}
/* ****************************** Other methods ****************************** */
@Override
public Class<FloatDirection>
getScalarClass()
{
return FloatDirection.class;
}
@Override
public FloatDirectionVector instantiateVector(final FloatVectorData fvd, final DirectionUnit displayUnit)
{
return new FloatDirectionVector(fvd, displayUnit);
}
@Override
public FloatDirection instantiateScalarSI(final float valueSI, final DirectionUnit displayUnit)
{
FloatDirection result = FloatDirection.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
@Override
public FloatAngleVector instantiateVectorRel(final FloatVectorData fvd, final AngleUnit displayUnit)
{
return new FloatAngleVector(fvd, displayUnit);
}
@Override
public FloatAngle instantiateScalarRelSI(final float valueSI, final AngleUnit displayUnit)
{
FloatAngle result = FloatAngle.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}