FloatMagneticFlux.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalInductanceUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.MagneticFluxDensityUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalar;
import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatMagneticFlux FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatMagneticFlux extends FloatScalarRel<MagneticFluxUnit, FloatMagneticFlux>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatMagneticFlux ZERO = new FloatMagneticFlux(0.0f, MagneticFluxUnit.SI);
/** Constant with value one. */
public static final FloatMagneticFlux ONE = new FloatMagneticFlux(1.0f, MagneticFluxUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatMagneticFlux NaN = new FloatMagneticFlux(Float.NaN, MagneticFluxUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatMagneticFlux POSITIVE_INFINITY =
new FloatMagneticFlux(Float.POSITIVE_INFINITY, MagneticFluxUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatMagneticFlux NEGATIVE_INFINITY =
new FloatMagneticFlux(Float.NEGATIVE_INFINITY, MagneticFluxUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatMagneticFlux POS_MAXVALUE = new FloatMagneticFlux(Float.MAX_VALUE, MagneticFluxUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatMagneticFlux NEG_MAXVALUE = new FloatMagneticFlux(-Float.MAX_VALUE, MagneticFluxUnit.SI);
/**
* Construct FloatMagneticFlux scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatMagneticFlux(final float value, final MagneticFluxUnit unit)
{
super(value, unit);
}
/**
* Construct FloatMagneticFlux scalar.
* @param value Scalar from which to construct this instance
*/
public FloatMagneticFlux(final FloatMagneticFlux value)
{
super(value);
}
/**
* Construct FloatMagneticFlux scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatMagneticFlux(final double value, final MagneticFluxUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatMagneticFlux instantiateRel(final float value, final MagneticFluxUnit unit)
{
return new FloatMagneticFlux(value, unit);
}
/**
* Construct FloatMagneticFlux scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatMagneticFlux instantiateSI(final float value)
{
return new FloatMagneticFlux(value, MagneticFluxUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatMagneticFlux interpolate(final FloatMagneticFlux zero, final FloatMagneticFlux one, final float ratio)
{
return new FloatMagneticFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatMagneticFlux max(final FloatMagneticFlux r1, final FloatMagneticFlux r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatMagneticFlux max(final FloatMagneticFlux r1, final FloatMagneticFlux r2, final FloatMagneticFlux... rn)
{
FloatMagneticFlux maxr = r1.gt(r2) ? r1 : r2;
for (FloatMagneticFlux r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatMagneticFlux min(final FloatMagneticFlux r1, final FloatMagneticFlux r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatMagneticFlux min(final FloatMagneticFlux r1, final FloatMagneticFlux r2, final FloatMagneticFlux... rn)
{
FloatMagneticFlux minr = r1.lt(r2) ? r1 : r2;
for (FloatMagneticFlux r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatMagneticFlux representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
* are allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatMagneticFlux
* @return FloatMagneticFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatMagneticFlux valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatMagneticFlux: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatMagneticFlux: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FloatMagneticFlux(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing FloatMagneticFlux from " + text + " using Locale "
+ Locale.getDefault(Locale.Category.FORMAT), exception);
}
}
/**
* Returns a FloatMagneticFlux based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatMagneticFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatMagneticFlux of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatMagneticFlux: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatMagneticFlux: empty unitString");
MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatMagneticFlux(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatMagneticFlux with unit " + unitString);
}
/**
* Calculate the division of FloatMagneticFlux and FloatMagneticFlux, which results in a FloatDimensionless scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatDimensionless; scalar as a division of FloatMagneticFlux and FloatMagneticFlux
*/
public final FloatDimensionless divide(final FloatMagneticFlux v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatElectricalPotential, which results in a FloatDuration scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatDuration; scalar as a division of FloatMagneticFlux and FloatElectricalPotential
*/
public final FloatDuration divide(final FloatElectricalPotential v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatDuration, which results in a FloatElectricalPotential scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatElectricalPotential; scalar as a division of FloatMagneticFlux and FloatDuration
*/
public final FloatElectricalPotential divide(final FloatDuration v)
{
return new FloatElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatArea, which results in a FloatMagneticFluxDensity scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatMagneticFluxDensity; scalar as a division of FloatMagneticFlux and FloatArea
*/
public final FloatMagneticFluxDensity divide(final FloatArea v)
{
return new FloatMagneticFluxDensity(this.si / v.si, MagneticFluxDensityUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatMagneticFluxDensity, which results in a FloatArea scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatArea; scalar as a division of FloatMagneticFlux and FloatMagneticFluxDensity
*/
public final FloatArea divide(final FloatMagneticFluxDensity v)
{
return new FloatArea(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatElectricalCurrent, which results in a FloatElectricalInductance
* scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatElectricalInductance; scalar as a division of FloatMagneticFlux and FloatElectricalCurrent
*/
public final FloatElectricalInductance divide(final FloatElectricalCurrent v)
{
return new FloatElectricalInductance(this.si / v.si, ElectricalInductanceUnit.SI);
}
/**
* Calculate the division of FloatMagneticFlux and FloatElectricalInductance, which results in a FloatElectricalCurrent
* scalar.
* @param v FloatMagneticFlux; scalar
* @return FloatElectricalCurrent; scalar as a division of FloatMagneticFlux and FloatElectricalInductance
*/
public final FloatElectricalCurrent divide(final FloatElectricalInductance v)
{
return new FloatElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
@Override
public FloatSIScalar reciprocal()
{
return FloatScalar.divide(FloatDimensionless.ONE, this);
}
}