FloatFrequency.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.AngularAccelerationUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatFrequency FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2025-09-06T15:16:28.380798Z")
public class FloatFrequency extends FloatScalarRel<FrequencyUnit, FloatFrequency>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatFrequency ZERO = new FloatFrequency(0.0f, FrequencyUnit.SI);
/** Constant with value one. */
public static final FloatFrequency ONE = new FloatFrequency(1.0f, FrequencyUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatFrequency NaN = new FloatFrequency(Float.NaN, FrequencyUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatFrequency POSITIVE_INFINITY = new FloatFrequency(Float.POSITIVE_INFINITY, FrequencyUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatFrequency NEGATIVE_INFINITY = new FloatFrequency(Float.NEGATIVE_INFINITY, FrequencyUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatFrequency POS_MAXVALUE = new FloatFrequency(Float.MAX_VALUE, FrequencyUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatFrequency NEG_MAXVALUE = new FloatFrequency(-Float.MAX_VALUE, FrequencyUnit.SI);
/**
* Construct FloatFrequency scalar with a unit.
* @param value the float value, expressed in the given unit
* @param unit unit for the float value
*/
public FloatFrequency(final float value, final FrequencyUnit unit)
{
super(value, unit);
}
/**
* Construct FloatFrequency scalar.
* @param value Scalar from which to construct this instance
*/
public FloatFrequency(final FloatFrequency value)
{
super(value);
}
/**
* Construct FloatFrequency scalar with a unit using a double value.
* @param value the double value, expressed in the given unit
* @param unit unit for the resulting float value
*/
public FloatFrequency(final double value, final FrequencyUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatFrequency instantiateRel(final float value, final FrequencyUnit unit)
{
return new FloatFrequency(value, unit);
}
/**
* Construct FloatFrequency scalar based on an SI value.
* @param value the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatFrequency ofSI(final float value)
{
return new FloatFrequency(value, FrequencyUnit.SI);
}
/**
* Interpolate between two values. Note that the first value does not have to be smaller than the second.
* @param zero the value at a ratio of zero
* @param one the value at a ratio of one
* @param ratio the ratio between 0 and 1, inclusive
* @return a FloatFrequency at the given ratio between 0 and 1
*/
public static FloatFrequency interpolate(final FloatFrequency zero, final FloatFrequency one, final float ratio)
{
Throw.when(ratio < 0.0 || ratio > 1.0, IllegalArgumentException.class,
"ratio for interpolation should be between 0 and 1, but is %f", ratio);
return new FloatFrequency(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatFrequency max(final FloatFrequency r1, final FloatFrequency r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatFrequency max(final FloatFrequency r1, final FloatFrequency r2, final FloatFrequency... rn)
{
FloatFrequency maxr = r1.gt(r2) ? r1 : r2;
for (FloatFrequency r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatFrequency min(final FloatFrequency r1, final FloatFrequency r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatFrequency min(final FloatFrequency r1, final FloatFrequency r2, final FloatFrequency... rn)
{
FloatFrequency minr = r1.lt(r2) ? r1 : r2;
for (FloatFrequency r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatFrequency representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
* are allowed, but not required, between the value and the unit.
* @param text the textual representation to parse into a FloatFrequency
* @return the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatFrequency valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatFrequency: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatFrequency: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
Throw.when(unit == null, IllegalArgumentException.class, "Unit %s not found for quantity Frequency", unitString);
return new FloatFrequency(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing FloatFrequency from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a FloatFrequency based on a value and the textual representation of the unit, which can be localized.
* @param value the value to use
* @param unitString the textual representation of the unit
* @return the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatFrequency of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatFrequency: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatFrequency: empty unitString");
FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
Throw.when(unit == null, IllegalArgumentException.class, "Error parsing FloatFrequency with unit %s", unitString);
return new FloatFrequency(value, unit);
}
/**
* Calculate the division of FloatFrequency and FloatFrequency, which results in a FloatDimensionless scalar.
* @param v scalar
* @return scalar as a division of FloatFrequency and FloatFrequency
*/
public final FloatDimensionless divide(final FloatFrequency v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatDuration, which results in a FloatDimensionless scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatDuration
*/
public final FloatDimensionless times(final FloatDuration v)
{
return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatLength, which results in a FloatSpeed scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatLength
*/
public final FloatSpeed times(final FloatLength v)
{
return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatSpeed, which results in a FloatAcceleration scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatSpeed
*/
public final FloatAcceleration times(final FloatSpeed v)
{
return new FloatAcceleration(this.si * v.si, AccelerationUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatEnergy, which results in a FloatPower scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatEnergy
*/
public final FloatPower times(final FloatEnergy v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatAngle, which results in a FloatAngularVelocity scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatAngle
*/
public final FloatAngularVelocity times(final FloatAngle v)
{
return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatAngularVelocity, which results in a FloatAngularAcceleration
* scalar.
* @param v scalar
* @return scalar as a multiplication of FloatFrequency and FloatAngularVelocity
*/
public final FloatAngularAcceleration times(final FloatAngularVelocity v)
{
return new FloatAngularAcceleration(this.si * v.si, AngularAccelerationUnit.SI);
}
@Override
public FloatDuration reciprocal()
{
return FloatDuration.ofSI(1.0f / this.si);
}
/**
* Multiply two scalars that result in a scalar of type FloatFrequency.
* @param scalar1 the first scalar
* @param scalar2 the second scalar
* @return the multiplication of both scalars as an instance of FloatFrequency
*/
public static FloatFrequency multiply(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
{
Throw.whenNull(scalar1, "scalar1 cannot be null");
Throw.whenNull(scalar2, "scalar2 cannot be null");
Throw.when(!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
.plus(scalar2.getDisplayUnit().getQuantity().getSiDimensions()).equals(FrequencyUnit.BASE.getSiDimensions()),
IllegalArgumentException.class, "Multiplying %s by %s does not result in instance of type FloatFrequency",
scalar1.toDisplayString(), scalar2.toDisplayString());
return new FloatFrequency(scalar1.si * scalar2.si, FrequencyUnit.SI);
}
/**
* Divide two scalars that result in a scalar of type FloatFrequency.
* @param scalar1 the first scalar
* @param scalar2 the second scalar
* @return the division of scalar1 by scalar2 as an instance of FloatFrequency
*/
public static FloatFrequency divide(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
{
Throw.whenNull(scalar1, "scalar1 cannot be null");
Throw.whenNull(scalar2, "scalar2 cannot be null");
Throw.when(!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
.minus(scalar2.getDisplayUnit().getQuantity().getSiDimensions()).equals(FrequencyUnit.BASE.getSiDimensions()),
IllegalArgumentException.class, "Dividing %s by %s does not result in an instance of type FloatFrequency",
scalar1.toDisplayString(), scalar2.toDisplayString());
return new FloatFrequency(scalar1.si / scalar2.si, FrequencyUnit.SI);
}
}