FloatElectricalPotential.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.ElectricalResistanceUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalar;
import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatElectricalPotential FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatElectricalPotential extends FloatScalarRel<ElectricalPotentialUnit, FloatElectricalPotential>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatElectricalPotential ZERO = new FloatElectricalPotential(0.0f, ElectricalPotentialUnit.SI);
/** Constant with value one. */
public static final FloatElectricalPotential ONE = new FloatElectricalPotential(1.0f, ElectricalPotentialUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatElectricalPotential NaN = new FloatElectricalPotential(Float.NaN, ElectricalPotentialUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatElectricalPotential POSITIVE_INFINITY =
new FloatElectricalPotential(Float.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatElectricalPotential NEGATIVE_INFINITY =
new FloatElectricalPotential(Float.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatElectricalPotential POS_MAXVALUE =
new FloatElectricalPotential(Float.MAX_VALUE, ElectricalPotentialUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatElectricalPotential NEG_MAXVALUE =
new FloatElectricalPotential(-Float.MAX_VALUE, ElectricalPotentialUnit.SI);
/**
* Construct FloatElectricalPotential scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatElectricalPotential(final float value, final ElectricalPotentialUnit unit)
{
super(value, unit);
}
/**
* Construct FloatElectricalPotential scalar.
* @param value Scalar from which to construct this instance
*/
public FloatElectricalPotential(final FloatElectricalPotential value)
{
super(value);
}
/**
* Construct FloatElectricalPotential scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatElectricalPotential(final double value, final ElectricalPotentialUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatElectricalPotential instantiateRel(final float value, final ElectricalPotentialUnit unit)
{
return new FloatElectricalPotential(value, unit);
}
/**
* Construct FloatElectricalPotential scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatElectricalPotential instantiateSI(final float value)
{
return new FloatElectricalPotential(value, ElectricalPotentialUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatElectricalPotential interpolate(final FloatElectricalPotential zero, final FloatElectricalPotential one,
final float ratio)
{
return new FloatElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatElectricalPotential max(final FloatElectricalPotential r1, final FloatElectricalPotential r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatElectricalPotential max(final FloatElectricalPotential r1, final FloatElectricalPotential r2,
final FloatElectricalPotential... rn)
{
FloatElectricalPotential maxr = r1.gt(r2) ? r1 : r2;
for (FloatElectricalPotential r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatElectricalPotential min(final FloatElectricalPotential r1, final FloatElectricalPotential r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatElectricalPotential min(final FloatElectricalPotential r1, final FloatElectricalPotential r2,
final FloatElectricalPotential... rn)
{
FloatElectricalPotential minr = r1.lt(r2) ? r1 : r2;
for (FloatElectricalPotential r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatElectricalPotential representation of a textual representation of a value with a unit. The String
* representation that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the
* unit. Spaces are allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatElectricalPotential
* @return FloatElectricalPotential; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatElectricalPotential valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatElectricalPotential: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class,
"Error parsing FloatElectricalPotential: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FloatElectricalPotential(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing FloatElectricalPotential from " + text + " using Locale "
+ Locale.getDefault(Locale.Category.FORMAT), exception);
}
}
/**
* Returns a FloatElectricalPotential based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatElectricalPotential; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatElectricalPotential of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatElectricalPotential: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatElectricalPotential: empty unitString");
ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatElectricalPotential(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatElectricalPotential with unit " + unitString);
}
/**
* Calculate the division of FloatElectricalPotential and FloatElectricalPotential, which results in a FloatDimensionless
* scalar.
* @param v FloatElectricalPotential; scalar
* @return FloatDimensionless; scalar as a division of FloatElectricalPotential and FloatElectricalPotential
*/
public final FloatDimensionless divide(final FloatElectricalPotential v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatElectricalPotential and FloatElectricalCurrent, which results in a FloatPower
* scalar.
* @param v FloatElectricalPotential; scalar
* @return FloatPower; scalar as a multiplication of FloatElectricalPotential and FloatElectricalCurrent
*/
public final FloatPower times(final FloatElectricalCurrent v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of FloatElectricalPotential and FloatElectricalCurrent, which results in a
* FloatElectricalResistance scalar.
* @param v FloatElectricalPotential; scalar
* @return FloatElectricalResistance; scalar as a division of FloatElectricalPotential and FloatElectricalCurrent
*/
public final FloatElectricalResistance divide(final FloatElectricalCurrent v)
{
return new FloatElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
}
/**
* Calculate the division of FloatElectricalPotential and FloatElectricalResistance, which results in a
* FloatElectricalCurrent scalar.
* @param v FloatElectricalPotential; scalar
* @return FloatElectricalCurrent; scalar as a division of FloatElectricalPotential and FloatElectricalResistance
*/
public final FloatElectricalCurrent divide(final FloatElectricalResistance v)
{
return new FloatElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
/**
* Calculate the multiplication of FloatElectricalPotential and FloatDuration, which results in a FloatMagneticFlux scalar.
* @param v FloatElectricalPotential; scalar
* @return FloatMagneticFlux; scalar as a multiplication of FloatElectricalPotential and FloatDuration
*/
public final FloatMagneticFlux times(final FloatDuration v)
{
return new FloatMagneticFlux(this.si * v.si, MagneticFluxUnit.SI);
}
@Override
public FloatSIScalar reciprocal()
{
return FloatScalar.divide(FloatDimensionless.ONE, this);
}
}