FloatAngularAcceleration.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.AngularAccelerationUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatAngularAcceleration FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2025-09-06T15:16:28.380798Z")
public class FloatAngularAcceleration extends FloatScalarRel<AngularAccelerationUnit, FloatAngularAcceleration>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatAngularAcceleration ZERO = new FloatAngularAcceleration(0.0f, AngularAccelerationUnit.SI);
/** Constant with value one. */
public static final FloatAngularAcceleration ONE = new FloatAngularAcceleration(1.0f, AngularAccelerationUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatAngularAcceleration NaN = new FloatAngularAcceleration(Float.NaN, AngularAccelerationUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatAngularAcceleration POSITIVE_INFINITY =
new FloatAngularAcceleration(Float.POSITIVE_INFINITY, AngularAccelerationUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatAngularAcceleration NEGATIVE_INFINITY =
new FloatAngularAcceleration(Float.NEGATIVE_INFINITY, AngularAccelerationUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatAngularAcceleration POS_MAXVALUE =
new FloatAngularAcceleration(Float.MAX_VALUE, AngularAccelerationUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatAngularAcceleration NEG_MAXVALUE =
new FloatAngularAcceleration(-Float.MAX_VALUE, AngularAccelerationUnit.SI);
/**
* Construct FloatAngularAcceleration scalar with a unit.
* @param value the float value, expressed in the given unit
* @param unit unit for the float value
*/
public FloatAngularAcceleration(final float value, final AngularAccelerationUnit unit)
{
super(value, unit);
}
/**
* Construct FloatAngularAcceleration scalar.
* @param value Scalar from which to construct this instance
*/
public FloatAngularAcceleration(final FloatAngularAcceleration value)
{
super(value);
}
/**
* Construct FloatAngularAcceleration scalar with a unit using a double value.
* @param value the double value, expressed in the given unit
* @param unit unit for the resulting float value
*/
public FloatAngularAcceleration(final double value, final AngularAccelerationUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatAngularAcceleration instantiateRel(final float value, final AngularAccelerationUnit unit)
{
return new FloatAngularAcceleration(value, unit);
}
/**
* Construct FloatAngularAcceleration scalar based on an SI value.
* @param value the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatAngularAcceleration ofSI(final float value)
{
return new FloatAngularAcceleration(value, AngularAccelerationUnit.SI);
}
/**
* Interpolate between two values. Note that the first value does not have to be smaller than the second.
* @param zero the value at a ratio of zero
* @param one the value at a ratio of one
* @param ratio the ratio between 0 and 1, inclusive
* @return a FloatAngularAcceleration at the given ratio between 0 and 1
*/
public static FloatAngularAcceleration interpolate(final FloatAngularAcceleration zero, final FloatAngularAcceleration one,
final float ratio)
{
Throw.when(ratio < 0.0 || ratio > 1.0, IllegalArgumentException.class,
"ratio for interpolation should be between 0 and 1, but is %f", ratio);
return new FloatAngularAcceleration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatAngularAcceleration max(final FloatAngularAcceleration r1, final FloatAngularAcceleration r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatAngularAcceleration max(final FloatAngularAcceleration r1, final FloatAngularAcceleration r2,
final FloatAngularAcceleration... rn)
{
FloatAngularAcceleration maxr = r1.gt(r2) ? r1 : r2;
for (FloatAngularAcceleration r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatAngularAcceleration min(final FloatAngularAcceleration r1, final FloatAngularAcceleration r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatAngularAcceleration min(final FloatAngularAcceleration r1, final FloatAngularAcceleration r2,
final FloatAngularAcceleration... rn)
{
FloatAngularAcceleration minr = r1.lt(r2) ? r1 : r2;
for (FloatAngularAcceleration r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatAngularAcceleration representation of a textual representation of a value with a unit. The String
* representation that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the
* unit. Spaces are allowed, but not required, between the value and the unit.
* @param text the textual representation to parse into a FloatAngularAcceleration
* @return the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatAngularAcceleration valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatAngularAcceleration: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class,
"Error parsing FloatAngularAcceleration: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
AngularAccelerationUnit unit = AngularAccelerationUnit.BASE.getUnitByAbbreviation(unitString);
Throw.when(unit == null, IllegalArgumentException.class, "Unit %s not found for quantity AngularAcceleration",
unitString);
return new FloatAngularAcceleration(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing FloatAngularAcceleration from " + text + " using Locale "
+ Locale.getDefault(Locale.Category.FORMAT), exception);
}
}
/**
* Returns a FloatAngularAcceleration based on a value and the textual representation of the unit, which can be localized.
* @param value the value to use
* @param unitString the textual representation of the unit
* @return the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatAngularAcceleration of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatAngularAcceleration: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatAngularAcceleration: empty unitString");
AngularAccelerationUnit unit = AngularAccelerationUnit.BASE.getUnitByAbbreviation(unitString);
Throw.when(unit == null, IllegalArgumentException.class, "Error parsing FloatAngularAcceleration with unit %s",
unitString);
return new FloatAngularAcceleration(value, unit);
}
/**
* Calculate the division of FloatAngularAcceleration and FloatAngularAcceleration, which results in a FloatDimensionless
* scalar.
* @param v scalar
* @return scalar as a division of FloatAngularAcceleration and FloatAngularAcceleration
*/
public final FloatDimensionless divide(final FloatAngularAcceleration v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatAngularAcceleration and FloatDuration, which results in a FloatAngularVelocity
* scalar.
* @param v scalar
* @return scalar as a multiplication of FloatAngularAcceleration and FloatDuration
*/
public final FloatAngularVelocity times(final FloatDuration v)
{
return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the division of FloatAngularAcceleration and FloatFrequency, which results in a FloatAngularVelocity scalar.
* @param v scalar
* @return scalar as a division of FloatAngularAcceleration and FloatFrequency
*/
public final FloatAngularVelocity divide(final FloatFrequency v)
{
return new FloatAngularVelocity(this.si / v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the division of FloatAngularAcceleration and FloatAngularVelocity, which results in a FloatFrequency scalar.
* @param v scalar
* @return scalar as a division of FloatAngularAcceleration and FloatAngularVelocity
*/
public final FloatFrequency divide(final FloatAngularVelocity v)
{
return new FloatFrequency(this.si / v.si, FrequencyUnit.SI);
}
@Override
public FloatSIScalar reciprocal()
{
return FloatSIScalar.divide(FloatDimensionless.ONE, this);
}
/**
* Multiply two scalars that result in a scalar of type FloatAngularAcceleration.
* @param scalar1 the first scalar
* @param scalar2 the second scalar
* @return the multiplication of both scalars as an instance of FloatAngularAcceleration
*/
public static FloatAngularAcceleration multiply(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
{
Throw.whenNull(scalar1, "scalar1 cannot be null");
Throw.whenNull(scalar2, "scalar2 cannot be null");
Throw.when(
!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
.plus(scalar2.getDisplayUnit().getQuantity().getSiDimensions())
.equals(AngularAccelerationUnit.BASE.getSiDimensions()),
IllegalArgumentException.class,
"Multiplying %s by %s does not result in instance of type FloatAngularAcceleration", scalar1.toDisplayString(),
scalar2.toDisplayString());
return new FloatAngularAcceleration(scalar1.si * scalar2.si, AngularAccelerationUnit.SI);
}
/**
* Divide two scalars that result in a scalar of type FloatAngularAcceleration.
* @param scalar1 the first scalar
* @param scalar2 the second scalar
* @return the division of scalar1 by scalar2 as an instance of FloatAngularAcceleration
*/
public static FloatAngularAcceleration divide(final FloatScalarRel<?, ?> scalar1, final FloatScalarRel<?, ?> scalar2)
{
Throw.whenNull(scalar1, "scalar1 cannot be null");
Throw.whenNull(scalar2, "scalar2 cannot be null");
Throw.when(
!scalar1.getDisplayUnit().getQuantity().getSiDimensions()
.minus(scalar2.getDisplayUnit().getQuantity().getSiDimensions())
.equals(AngularAccelerationUnit.BASE.getSiDimensions()),
IllegalArgumentException.class,
"Dividing %s by %s does not result in an instance of type FloatAngularAcceleration", scalar1.toDisplayString(),
scalar2.toDisplayString());
return new FloatAngularAcceleration(scalar1.si / scalar2.si, AngularAccelerationUnit.SI);
}
}