FloatAngle.java
package org.djunits.value.vfloat.scalar;
import java.util.Locale;
import org.djunits.unit.AngleUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DirectionUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.value.vfloat.scalar.base.FloatScalar;
import org.djunits.value.vfloat.scalar.base.FloatScalarRelWithAbs;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the FloatAngle FloatScalar.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatAngle extends FloatScalarRelWithAbs<DirectionUnit, FloatDirection, AngleUnit, FloatAngle>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatAngle ZERO = new FloatAngle(0.0f, AngleUnit.SI);
/** Constant with value one. */
public static final FloatAngle ONE = new FloatAngle(1.0f, AngleUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatAngle NaN = new FloatAngle(Float.NaN, AngleUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatAngle POSITIVE_INFINITY = new FloatAngle(Float.POSITIVE_INFINITY, AngleUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatAngle NEGATIVE_INFINITY = new FloatAngle(Float.NEGATIVE_INFINITY, AngleUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatAngle POS_MAXVALUE = new FloatAngle(Float.MAX_VALUE, AngleUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatAngle NEG_MAXVALUE = new FloatAngle(-Float.MAX_VALUE, AngleUnit.SI);
/**
* Construct FloatAngle scalar.
* @param value float; the float value
* @param unit AngleUnit; unit for the float value
*/
public FloatAngle(final float value, final AngleUnit unit)
{
super(value, unit);
}
/**
* Construct FloatAngle scalar.
* @param value FloatAngle; Scalar from which to construct this instance
*/
public FloatAngle(final FloatAngle value)
{
super(value);
}
/**
* Construct FloatAngle scalar using a double value.
* @param value double; the double value
* @param unit AngleUnit; unit for the resulting float value
*/
public FloatAngle(final double value, final AngleUnit unit)
{
super((float) value, unit);
}
@Override
public final FloatAngle instantiateRel(final float value, final AngleUnit unit)
{
return new FloatAngle(value, unit);
}
/**
* Construct FloatAngle scalar.
* @param value float; the float value in SI units
* @return FloatAngle; the new scalar with the SI value
*/
public static final FloatAngle instantiateSI(final float value)
{
return new FloatAngle(value, AngleUnit.SI);
}
@Override
public final FloatDirection instantiateAbs(final float value, final DirectionUnit unit)
{
return new FloatDirection(value, unit);
}
/**
* Interpolate between two values.
* @param zero FloatAngle; the low value
* @param one FloatAngle; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return FloatAngle; a Scalar at the ratio between
*/
public static FloatAngle interpolate(final FloatAngle zero, final FloatAngle one, final float ratio)
{
return new FloatAngle(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatAngle; the first scalar
* @param r2 FloatAngle; the second scalar
* @return FloatAngle; the maximum value of two relative scalars
*/
public static FloatAngle max(final FloatAngle r1, final FloatAngle r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatAngle; the first scalar
* @param r2 FloatAngle; the second scalar
* @param rn FloatAngle...; the other scalars
* @return FloatAngle; the maximum value of more than two relative scalars
*/
public static FloatAngle max(final FloatAngle r1, final FloatAngle r2, final FloatAngle... rn)
{
FloatAngle maxr = r1.gt(r2) ? r1 : r2;
for (FloatAngle r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatAngle; the first scalar
* @param r2 FloatAngle; the second scalar
* @return FloatAngle; the minimum value of two relative scalars
*/
public static FloatAngle min(final FloatAngle r1, final FloatAngle r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatAngle; the first scalar
* @param r2 FloatAngle; the second scalar
* @param rn FloatAngle...; the other scalars
* @return FloatAngle; the minimum value of more than two relative scalars
*/
public static FloatAngle min(final FloatAngle r1, final FloatAngle r2, final FloatAngle... rn)
{
FloatAngle minr = r1.lt(r2) ? r1 : r2;
for (FloatAngle r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatAngle representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatAngle
* @return FloatAngle; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatAngle valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatAngle: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatAngle: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
float f = numberParser.parseFloat(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
AngleUnit unit = AngleUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new FloatAngle(f, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing FloatAngle from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a FloatAngle based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatAngle; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatAngle of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatAngle: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatAngle: empty unitString");
AngleUnit unit = AngleUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatAngle(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatAngle with unit " + unitString);
}
/**
* Calculate the division of FloatAngle and FloatAngle, which results in a FloatDimensionless scalar.
* @param v FloatAngle; scalar
* @return FloatDimensionless; scalar as a division of FloatAngle and FloatAngle
*/
public final FloatDimensionless divide(final FloatAngle v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatAngle and FloatFrequency, which results in a FloatAngularVelocity scalar.
* @param v FloatAngle; scalar
* @return FloatAngularVelocity; scalar as a multiplication of FloatAngle and FloatFrequency
*/
public final FloatAngularVelocity times(final FloatFrequency v)
{
return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the division of FloatAngle and FloatDuration, which results in a FloatAngularVelocity scalar.
* @param v FloatAngle; scalar
* @return FloatAngularVelocity; scalar as a division of FloatAngle and FloatDuration
*/
public final FloatAngularVelocity divide(final FloatDuration v)
{
return new FloatAngularVelocity(this.si / v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the division of FloatAngle and FloatAngularVelocity, which results in a FloatDuration scalar.
* @param v FloatAngle; scalar
* @return FloatDuration; scalar as a division of FloatAngle and FloatAngularVelocity
*/
public final FloatDuration divide(final FloatAngularVelocity v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
@Override
public FloatSIScalar reciprocal()
{
return FloatScalar.divide(FloatDimensionless.ONE, this);
}
}