FloatDirectionMatrix.java
package org.djunits.value.vfloat.matrix;
import java.util.Collection;
import org.djunits.unit.AngleUnit;
import org.djunits.unit.DirectionUnit;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vfloat.matrix.base.FloatMatrixAbs;
import org.djunits.value.vfloat.matrix.base.FloatSparseValue;
import org.djunits.value.vfloat.matrix.data.FloatMatrixData;
import org.djunits.value.vfloat.scalar.FloatAngle;
import org.djunits.value.vfloat.scalar.FloatDirection;
import org.djunits.value.vfloat.vector.FloatAngleVector;
import org.djunits.value.vfloat.vector.FloatDirectionVector;
import org.djunits.value.vfloat.vector.data.FloatVectorData;
import jakarta.annotation.Generated;
/**
* Immutable FloatDirection Matrix.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class FloatDirectionMatrix extends FloatMatrixAbs<DirectionUnit, FloatDirection, FloatDirectionVector,
FloatDirectionMatrix, AngleUnit, FloatAngle, FloatAngleVector, FloatAngleMatrix>
{
/** */
private static final long serialVersionUID = 20151006L;
/**
* Construct a DirectionMatrix from an internal data object.
* @param data FloatMatrixData; the internal data object for the matrix
* @param displayUnit DirectionUnit; the display unit of the matrix data
*/
public FloatDirectionMatrix(final FloatMatrixData data, final DirectionUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH float[][] */
/**
* Construct a FloatDirectionMatrix from a float[][] object. The float values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data float[][]; the data for the matrix, expressed in the displayUnit
* @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final float[][] data, final DirectionUnit displayUnit, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct a FloatDirectionMatrix from a float[][] object. The float values are expressed in the displayUnit. Assume that
* the StorageType is DENSE since we offer the data as an array of an array.
* @param data float[][]; the data for the matrix
* @param displayUnit DirectionUnit; the unit of the values in the data array, and display unit when printing
*/
public FloatDirectionMatrix(final float[][] data, final DirectionUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatDirectionMatrix from a float[][] object with SI-unit values.
* @param data float[][]; the data for the matrix, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final float[][] data, final StorageType storageType)
{
this(data, DirectionUnit.BASE.getStandardUnit(), storageType);
}
/**
* Construct a FloatDirectionMatrix from a float[][] object with SI-unit values. Assume that the StorageType is DENSE since
* we offer the data as an array of an array.
* @param data float[][]; the data for the matrix, in SI units
*/
public FloatDirectionMatrix(final float[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH FloatDirection[][] */
/**
* Construct a FloatDirectionMatrix from an array of an array of FloatDirection objects. The FloatDirection values are each
* expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data FloatDirection[][]; the data for the matrix
* @param displayUnit DirectionUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final FloatDirection[][] data, final DirectionUnit displayUnit, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, storageType), displayUnit);
}
/**
* Construct a FloatDirectionMatrix from an array of an array of FloatDirection objects. The FloatDirection values are each
* expressed in their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* Assume that the StorageType is DENSE since we offer the data as an array of an array.
* @param data FloatDirection[][]; the data for the matrix
* @param displayUnit DirectionUnit; the display unit of the values when printing
*/
public FloatDirectionMatrix(final FloatDirection[][] data, final DirectionUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct a FloatDirectionMatrix from an array of an array of FloatDirection objects. The FloatDirection values are each
* expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing.
* since we offer the data as an array of an array.
* @param data FloatDirection[][]; the data for the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final FloatDirection[][] data, final StorageType storageType)
{
this(data, DirectionUnit.BASE.getStandardUnit(), storageType);
}
/**
* Construct a FloatDirectionMatrix from an array of an array of FloatDirection objects. The FloatDirection values are each
* expressed in their own unit, but will be internally stored as SI values, and expressed using SI units when printing.
* Assume that the StorageType is DENSE since we offer the data as an array of an array.
* @param data FloatDirection[][]; the data for the matrix
*/
public FloatDirectionMatrix(final FloatDirection[][] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Collection<FloatSparseValue> */
/**
* Construct a FloatDirectionMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the
* unit in which the values in the collection are expressed, as well as the unit in which they will be printed.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit DirectionUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final Collection<FloatSparseValue<DirectionUnit, FloatDirection>> data,
final DirectionUnit displayUnit, final int rows, final int cols, final StorageType storageType)
{
this(FloatMatrixData.instantiate(data, rows, cols, storageType), displayUnit);
}
/**
* Construct a FloatDirectionMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the
* unit in which the values in the collection are expressed, as well as the unit in which they will be printed. Assume the
* storage type is SPARSE, since we offer the data as a collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param displayUnit DirectionUnit; the display unit of the matrix data, and the unit of the data points
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatDirectionMatrix(final Collection<FloatSparseValue<DirectionUnit, FloatDirection>> data,
final DirectionUnit displayUnit, final int rows, final int cols)
{
this(data, displayUnit, rows, cols, StorageType.SPARSE);
}
/**
* Construct a FloatDirectionMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the
* unit in which the values in the collection are expressed, as well as the unit in which they will be printed. Use the SI
* unit or base unit as the displayUnit.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Matrix
*/
public FloatDirectionMatrix(final Collection<FloatSparseValue<DirectionUnit, FloatDirection>> data, final int rows,
final int cols, final StorageType storageType)
{
this(data, DirectionUnit.BASE.getStandardUnit(), rows, cols, storageType);
}
/**
* Construct a FloatDirectionMatrix from a (sparse) collection of FloatSparseValue objects. The displayUnit indicates the
* unit in which the values in the collection are expressed, as well as the unit in which they will be printed. Use the SI
* unit or base unit as the displayUnit. Assume the storage type is SPARSE, since we offer the data as a collection.
* @param data Collection<FloatSparseValue>; the data for the matrix
* @param rows int; the number of rows of the matrix
* @param cols int; the number of columns of the matrix
*/
public FloatDirectionMatrix(final Collection<FloatSparseValue<DirectionUnit, FloatDirection>> data, final int rows,
final int cols)
{
this(data, DirectionUnit.BASE.getStandardUnit(), rows, cols, StorageType.SPARSE);
}
@Override
public Class<FloatDirection> getScalarClass()
{
return FloatDirection.class;
}
@Override
public Class<FloatDirectionVector> getVectorClass()
{
return FloatDirectionVector.class;
}
@Override
public FloatDirectionMatrix instantiateMatrix(final FloatMatrixData fmd, final DirectionUnit displayUnit)
{
return new FloatDirectionMatrix(fmd, displayUnit);
}
@Override
public FloatDirectionVector instantiateVector(final FloatVectorData fvd, final DirectionUnit displayUnit)
{
return new FloatDirectionVector(fvd, displayUnit);
}
@Override
public FloatDirection instantiateScalarSI(final float valueSI, final DirectionUnit displayUnit)
{
FloatDirection result = FloatDirection.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
@Override
public FloatAngleMatrix instantiateMatrixRel(final FloatMatrixData fmd, final AngleUnit displayUnit)
{
return new FloatAngleMatrix(fmd, displayUnit);
}
@Override
public FloatAngleVector instantiateVectorRel(final FloatVectorData fvd, final AngleUnit displayUnit)
{
return new FloatAngleVector(fvd, displayUnit);
}
@Override
public FloatAngle instantiateScalarRelSI(final float valueSI, final AngleUnit displayUnit)
{
FloatAngle result = FloatAngle.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}