FloatMatrixDataDense.java
- package org.djunits.value.vfloat.matrix.data;
- import java.util.stream.IntStream;
- import org.djunits.value.ValueRuntimeException;
- import org.djunits.value.storage.StorageType;
- import org.djunits.value.vfloat.function.FloatFunction;
- import org.djunits.value.vfloat.function.FloatFunction2;
- import org.djutils.exceptions.Throw;
- /**
- * Stores dense data for a FloatMatrix and carries out basic operations.
- * <p>
- * Copyright (c) 2013-2025 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
- * BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
- * </p>
- * @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
- * @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
- */
- public class FloatMatrixDataDense extends FloatMatrixData
- {
- /** */
- private static final long serialVersionUID = 1L;
- /**
- * Create a matrix with dense data.
- * @param matrixSI the data to store
- * @param rows the number of rows
- * @param cols the number of columns
- * @throws ValueRuntimeException in case <code>rows * cols != matrixSI.length</code>
- */
- public FloatMatrixDataDense(final float[] matrixSI, final int rows, final int cols) throws ValueRuntimeException
- {
- super(StorageType.DENSE);
- if (rows * cols != matrixSI.length)
- {
- throw new ValueRuntimeException("FloatMatrixDataDense constructor, rows * cols != matrixSI.length");
- }
- this.matrixSI = new float[matrixSI.length];
- System.arraycopy(matrixSI, 0, this.matrixSI, 0, matrixSI.length);
- this.rows = rows;
- this.cols = cols;
- }
- /**
- * Create a matrix with dense data. The float array is of the form d[rows][columns] so each value can be found with
- * f[row][column].
- * @param matrixSI the data to store
- * @throws NullPointerException when matrixSI is null
- * @throws ValueRuntimeException in case matrix is ragged
- */
- public FloatMatrixDataDense(final float[][] matrixSI) throws ValueRuntimeException
- {
- super(StorageType.DENSE);
- Throw.whenNull(matrixSI, "DoubleMatrixDataDense constructor, matrixSI == null");
- this.rows = matrixSI.length;
- this.cols = this.rows == 0 ? 0 : matrixSI[0].length;
- this.matrixSI = new float[this.rows * this.cols];
- for (int r = 0; r < this.rows; r++)
- {
- float[] row = matrixSI[r];
- if (row.length != this.cols)
- {
- throw new ValueRuntimeException("FloatMatrixDataDense constructor, ragged matrix");
- }
- System.arraycopy(row, 0, this.matrixSI, r * this.cols, row.length);
- }
- }
- @Override
- public final int cardinality()
- {
- // this does not copy the data. See http://stackoverflow.com/questions/23106093/how-to-get-a-stream-from-a-float
- return (int) IntStream.range(0, this.matrixSI.length).parallel().mapToDouble(i -> this.matrixSI[i])
- .filter(d -> d != 0.0).count();
- }
- @Override
- public final FloatMatrixDataDense assign(final FloatFunction floatFunction)
- {
- IntStream.range(0, this.rows() * this.cols()).parallel()
- .forEach(i -> this.matrixSI[i] = floatFunction.apply(this.matrixSI[i]));
- return this;
- }
- @Override
- public final FloatMatrixDataDense assign(final FloatFunction2 floatFunction, final FloatMatrixData right)
- {
- if (right.isDense())
- {
- FloatMatrixDataDense rightDense = (FloatMatrixDataDense) right;
- IntStream.range(0, this.rows() * this.cols()).parallel()
- .forEach(i -> this.matrixSI[i] = floatFunction.apply(this.matrixSI[i], rightDense.matrixSI[i]));
- }
- else
- {
- IntStream.range(0, this.rows() * this.cols()).parallel().forEach(
- i -> this.matrixSI[i] = floatFunction.apply(this.matrixSI[i], right.getSI(i / this.cols, i % this.cols)));
- }
- return this;
- }
- @Override
- public final FloatMatrixDataDense toDense()
- {
- return this;
- }
- @Override
- public final FloatMatrixDataSparse toSparse()
- {
- int length = cardinality();
- float[] sparseSI = new float[length];
- long[] indices = new long[length];
- int count = 0;
- for (int r = 0; r < this.rows; r++)
- {
- for (int c = 0; c < this.cols; c++)
- {
- int index = r * this.cols + c;
- if (this.matrixSI[index] != 0.0)
- {
- sparseSI[count] = this.matrixSI[index];
- indices[count] = index;
- count++;
- }
- }
- }
- return new FloatMatrixDataSparse(sparseSI, indices, this.rows, this.cols);
- }
- @Override
- public final float getSI(final int row, final int col)
- {
- return this.matrixSI[row * this.cols + col];
- }
- @Override
- public final void setSI(final int row, final int col, final float valueSI)
- {
- this.matrixSI[row * this.cols + col] = valueSI;
- }
- @Override
- public final float[][] getDenseMatrixSI()
- {
- float[][] matrix = new float[this.rows][];
- for (int r = 0; r < this.rows; r++)
- {
- float[] row = new float[this.cols];
- System.arraycopy(this.matrixSI, r * this.cols, row, 0, row.length);
- matrix[r] = row;
- }
- return matrix;
- }
- @Override
- public final double[][] getDoubleDenseMatrixSI()
- {
- double[][] matrix = new double[this.rows][];
- for (int r = 0; r < this.rows; r++)
- {
- double[] row = new double[this.cols];
- int offset = r * this.cols;
- for (int c = 0; c < this.cols; c++)
- {
- row[c] = this.matrixSI[offset++];
- }
- matrix[r] = row;
- }
- return matrix;
- }
- @Override
- public final FloatMatrixDataDense copy()
- {
- try
- {
- return new FloatMatrixDataDense(getDenseMatrixSI());
- }
- catch (ValueRuntimeException exception)
- {
- throw new RuntimeException(exception); // should not happen -- original is not ragged...
- }
- }
- @Override
- public FloatMatrixData plus(final FloatMatrixData right) throws ValueRuntimeException
- {
- checkSizes(right);
- float[] fm = new float[this.rows * this.cols];
- if (right.isDense())
- {
- IntStream.range(0, this.rows).parallel().forEach(r -> IntStream.range(0, this.cols).forEach(
- c -> fm[r * this.cols + c] = this.matrixSI[r * this.cols + c] + right.matrixSI[r * this.cols + c]));
- }
- else
- { // right is sparse
- IntStream.range(0, this.rows).parallel().forEach(r -> IntStream.range(0, this.cols)
- .forEach(c -> fm[r * this.cols + c] = this.matrixSI[r * this.cols + c] + right.getSI(r, c)));
- }
- return new FloatMatrixDataDense(fm, this.rows, this.cols);
- }
- @Override
- public final FloatMatrixDataDense minus(final FloatMatrixData right)
- {
- checkSizes(right);
- float[] fm = new float[this.rows * this.cols];
- if (right.isDense())
- {
- IntStream.range(0, this.rows).parallel().forEach(r -> IntStream.range(0, this.cols).forEach(
- c -> fm[r * this.cols + c] = this.matrixSI[r * this.cols + c] - right.matrixSI[r * this.cols + c]));
- }
- else
- { // right is sparse
- IntStream.range(0, this.rows).parallel().forEach(r -> IntStream.range(0, this.cols)
- .forEach(c -> fm[r * this.cols + c] = this.matrixSI[r * this.cols + c] - right.getSI(r, c)));
- }
- return new FloatMatrixDataDense(fm, this.rows, this.cols);
- }
- @Override
- public FloatMatrixData times(final FloatMatrixData right) throws ValueRuntimeException
- {
- if (right.isSparse())
- {
- // result shall be sparse
- return right.times(this);
- }
- // Both are dense
- checkSizes(right);
- return this.copy().multiplyBy(right);
- }
- @Override
- public FloatMatrixData divide(final FloatMatrixData right) throws ValueRuntimeException
- {
- checkSizes(right);
- return this.copy().divideBy(right);
- }
- }