AccelerationVector.java
package org.djunits.value.vdouble.vector;
import java.util.List;
import java.util.Map;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.scale.IdentityScale;
import org.djunits.value.storage.StorageType;
import org.djunits.value.vdouble.scalar.Acceleration;
import org.djunits.value.vdouble.vector.base.DoubleVectorRel;
import org.djunits.value.vdouble.vector.data.DoubleVectorData;
import jakarta.annotation.Generated;
/**
* Double AccelerationVector, a vector of values with a AccelerationUnit.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class AccelerationVector extends DoubleVectorRel<AccelerationUnit, Acceleration, AccelerationVector>
{
/** */
private static final long serialVersionUID = 20190905L;
/**
* Construct an AccelerationVector from an internal data object.
* @param data DoubleVectorData; the internal data object for the vector
* @param displayUnit AccelerationUnit; the display unit of the vector data
*/
public AccelerationVector(final DoubleVectorData data, final AccelerationUnit displayUnit)
{
super(data, displayUnit);
}
/* CONSTRUCTORS WITH double[] */
/**
* Construct an AccelerationVector from a double[] object. The double values are expressed in the displayUnit, and will be
* printed using the displayUnit.
* @param data double[]; the data for the vector, expressed in the displayUnit
* @param displayUnit AccelerationUnit; the unit of the values in the data array, and display unit when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final double[] data, final AccelerationUnit displayUnit, final StorageType storageType)
{
this(DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType), displayUnit);
}
/**
* Construct an AccelerationVector from a double[] object. The double values are expressed in the displayUnit. Assume that
* the StorageType is DENSE since we offer the data as an array.
* @param data double[]; the data for the vector
* @param displayUnit AccelerationUnit; the unit of the values in the data array, and display unit when printing
*/
public AccelerationVector(final double[] data, final AccelerationUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an AccelerationVector from a double[] object with SI-unit values.
* @param data double[]; the data for the vector, in SI units
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final double[] data, final StorageType storageType)
{
this(data, AccelerationUnit.SI, storageType);
}
/**
* Construct an AccelerationVector from a double[] object with SI-unit values. Assume that the StorageType is DENSE since we
* offer the data as an array.
* @param data double[]; the data for the vector, in SI units
*/
public AccelerationVector(final double[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Acceleration[] */
/**
* Construct an AccelerationVector from an array of Acceleration objects. The Acceleration values are each expressed in
* their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing.
* @param data Acceleration[]; the data for the vector
* @param displayUnit AccelerationUnit; the display unit of the values when printing
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final Acceleration[] data, final AccelerationUnit displayUnit, final StorageType storageType)
{
this(DoubleVectorData.instantiate(data, storageType), displayUnit);
}
/**
* Construct an AccelerationVector from an array of Acceleration objects. The Acceleration values are each expressed in
* their own unit, but will be internally stored as SI values, all expressed in the displayUnit when printing. Assume that
* the StorageType is DENSE since we offer the data as an array.
* @param data Acceleration[]; the data for the vector
* @param displayUnit AccelerationUnit; the display unit of the values when printing
*/
public AccelerationVector(final Acceleration[] data, final AccelerationUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an AccelerationVector from an array of Acceleration objects. The Acceleration values are each expressed in
* their own unit, but will be internally stored as SI values, and expressed using SI units when printing. since we offer
* the data as an array.
* @param data Acceleration[]; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final Acceleration[] data, final StorageType storageType)
{
this(data, AccelerationUnit.SI, storageType);
}
/**
* Construct an AccelerationVector from an array of Acceleration objects. The Acceleration values are each expressed in
* their own unit, but will be internally stored as SI values, and expressed using SI units when printing. Assume that the
* StorageType is DENSE since we offer the data as an array.
* @param data Acceleration[]; the data for the vector
*/
public AccelerationVector(final Acceleration[] data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH List<Double> or List<Acceleration> */
/**
* Construct an AccelerationVector from a list of Number objects or a list of Acceleration objects. Note that the
* displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or
* Acceleration objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in
* the list are expressed, as well as the unit in which they will be printed. In case the list contains Acceleration
* objects, each Acceleration has its own unit, and the displayUnit is just used for printing. The values but will always be
* internally stored as SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Double> or List<Acceleration>; the data for the vector
* @param displayUnit AccelerationUnit; the display unit of the vector data, and the unit of the data points when the data
* is expressed as List<Double> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final List<? extends Number> data, final AccelerationUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? DoubleVectorData.instantiate(new double[] {}, IdentityScale.SCALE, storageType)
: data.get(0) instanceof Acceleration ? DoubleVectorData.instantiate(data, IdentityScale.SCALE, storageType)
: DoubleVectorData.instantiate(data, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct an AccelerationVector from a list of Number objects or a list of Acceleration objects. Note that the
* displayUnit has a different meaning depending on whether the list contains Number objects (e.g., Double objects) or
* Acceleration objects. In case the list contains Number objects, the displayUnit indicates the unit in which the values in
* the list are expressed, as well as the unit in which they will be printed. In case the list contains Acceleration
* objects, each Acceleration has its own unit, and the displayUnit is just used for printing. The values but will always be
* internally stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume
* the storage type is DENSE since we offer the data as a List.
* @param data List<Double> or List<Acceleration>; the data for the vector
* @param displayUnit AccelerationUnit; the display unit of the vector data, and the unit of the data points when the data
* is expressed as List<Double> or List<Number> in general
*/
public AccelerationVector(final List<? extends Number> data, final AccelerationUnit displayUnit)
{
this(data, displayUnit, StorageType.DENSE);
}
/**
* Construct an AccelerationVector from a list of Number objects or a list of Acceleration objects. When data contains
* numbers such as Double, assume that they are expressed using SI units. When the data consists of Acceleration objects,
* they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing.
* @param data List<Double> or List<Acceleration>; the data for the vector
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final List<? extends Number> data, final StorageType storageType)
{
this(data, AccelerationUnit.SI, storageType);
}
/**
* Construct an AccelerationVector from a list of Number objects or a list of Acceleration objects. When data contains
* numbers such as Double, assume that they are expressed using SI units. When the data consists of Acceleration objects,
* they each have their own unit, but will be printed using SI units or base units. The values but will always be internally
* stored as SI values or base values, and expressed using the display unit or base unit when printing. Assume the storage
* type is DENSE since we offer the data as a List.
* @param data List<Double> or List<Acceleration>; the data for the vector
*/
public AccelerationVector(final List<? extends Number> data)
{
this(data, StorageType.DENSE);
}
/* CONSTRUCTORS WITH Map<Integer, Double> or Map<Integer, Acceleration> */
/**
* Construct an AccelerationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of Acceleration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Double objects) or Acceleration objects. In
* case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
* well as the unit in which they will be printed. In case the map contains Acceleration objects, each Acceleration has its
* own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
* base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Double> or Map<Integer, Acceleration>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit AccelerationUnit; the display unit of the vector data, and the unit of the data points when the data
* is expressed as List<Double> or List<Number> in general
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final Map<Integer, ? extends Number> data, final int size, final AccelerationUnit displayUnit,
final StorageType storageType)
{
this(data.size() == 0 ? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: data.values().iterator().next() instanceof Acceleration
? DoubleVectorData.instantiate(data, size, IdentityScale.SCALE, storageType)
: DoubleVectorData.instantiate(data, size, displayUnit.getScale(), storageType),
displayUnit);
}
/**
* Construct an AccelerationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of Acceleration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. Note that the displayUnit has a
* different meaning depending on whether the map contains Number objects (e.g., Double objects) or Acceleration objects. In
* case the map contains Number objects, the displayUnit indicates the unit in which the values in the map are expressed, as
* well as the unit in which they will be printed. In case the map contains Acceleration objects, each Acceleration has its
* own unit, and the displayUnit is just used for printing. The values but will always be internally stored as SI values or
* base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE since we
* offer the data as a Map.
* @param data Map<Integer, Double> or Map<Integer, Acceleration>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param displayUnit AccelerationUnit; the display unit of the vector data, and the unit of the data points when the data
* is expressed as List<Double> or List<Number> in general
*/
public AccelerationVector(final Map<Integer, ? extends Number> data, final int size, final AccelerationUnit displayUnit)
{
this(data, size, displayUnit, StorageType.SPARSE);
}
/**
* Construct an AccelerationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of Acceleration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Double, assume that they are expressed using SI units. When the data consists of Acceleration objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing.
* @param data Map<Integer, Double> or Map<Integer, Acceleration>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
* @param storageType StorageType; the StorageType (SPARSE or DENSE) to use for constructing the Vector
*/
public AccelerationVector(final Map<Integer, ? extends Number> data, final int size, final StorageType storageType)
{
this(data, size, AccelerationUnit.SI, storageType);
}
/**
* Construct an AccelerationVector from a (sparse) map of index values to Number objects or a (sparse) map of index values
* to of Acceleration objects. Using index values is particularly useful for sparse vectors. The size parameter indicates
* the size of the vector, since the largest index does not have to be part of the map. When data contains numbers such as
* Double, assume that they are expressed using SI units. When the data consists of Acceleration objects, they each have
* their own unit, but will be printed using SI units or base units. The values but will always be internally stored as SI
* values or base values, and expressed using the display unit or base unit when printing. Assume the storage type is SPARSE
* since we offer the data as a Map.
* @param data Map<Integer, Double> or Map<Integer, Acceleration>; the data for the vector
* @param size int; the size off the vector, i.e., the highest index
*/
public AccelerationVector(final Map<Integer, ? extends Number> data, final int size)
{
this(data, size, StorageType.SPARSE);
}
/* ****************************** Other methods ****************************** */
@Override
public Class<Acceleration> getScalarClass()
{
return Acceleration.class;
}
@Override
public AccelerationVector instantiateVector(final DoubleVectorData dvd, final AccelerationUnit displayUnit)
{
return new AccelerationVector(dvd, displayUnit);
}
@Override
public Acceleration instantiateScalarSI(final double valueSI, final AccelerationUnit displayUnit)
{
Acceleration result = Acceleration.instantiateSI(valueSI);
result.setDisplayUnit(displayUnit);
return result;
}
}