Power.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.MomentumUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the Power DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class Power extends DoubleScalarRel<PowerUnit, Power>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final Power ZERO = new Power(0.0, PowerUnit.SI);
/** Constant with value one. */
public static final Power ONE = new Power(1.0, PowerUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Power NaN = new Power(Double.NaN, PowerUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final Power POSITIVE_INFINITY = new Power(Double.POSITIVE_INFINITY, PowerUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final Power NEGATIVE_INFINITY = new Power(Double.NEGATIVE_INFINITY, PowerUnit.SI);
/** Constant with value MAX_VALUE. */
public static final Power POS_MAXVALUE = new Power(Double.MAX_VALUE, PowerUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final Power NEG_MAXVALUE = new Power(-Double.MAX_VALUE, PowerUnit.SI);
/**
* Construct Power scalar.
* @param value double; the double value
* @param unit PowerUnit; unit for the double value
*/
public Power(final double value, final PowerUnit unit)
{
super(value, unit);
}
/**
* Construct Power scalar.
* @param value Power; Scalar from which to construct this instance
*/
public Power(final Power value)
{
super(value);
}
@Override
public final Power instantiateRel(final double value, final PowerUnit unit)
{
return new Power(value, unit);
}
/**
* Construct Power scalar.
* @param value double; the double value in SI units
* @return Power; the new scalar with the SI value
*/
public static final Power instantiateSI(final double value)
{
return new Power(value, PowerUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Power; the low value
* @param one Power; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return Power; a Scalar at the ratio between
*/
public static Power interpolate(final Power zero, final Power one, final double ratio)
{
return new Power(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Power; the first scalar
* @param r2 Power; the second scalar
* @return Power; the maximum value of two relative scalars
*/
public static Power max(final Power r1, final Power r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Power; the first scalar
* @param r2 Power; the second scalar
* @param rn Power...; the other scalars
* @return Power; the maximum value of more than two relative scalars
*/
public static Power max(final Power r1, final Power r2, final Power... rn)
{
Power maxr = r1.gt(r2) ? r1 : r2;
for (Power r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Power; the first scalar
* @param r2 Power; the second scalar
* @return Power; the minimum value of two relative scalars
*/
public static Power min(final Power r1, final Power r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Power; the first scalar
* @param r2 Power; the second scalar
* @param rn Power...; the other scalars
* @return Power; the minimum value of more than two relative scalars
*/
public static Power min(final Power r1, final Power r2, final Power... rn)
{
Power minr = r1.lt(r2) ? r1 : r2;
for (Power r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a Power representation of a textual representation of a value with a unit. The String representation that can be
* parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are allowed,
* but not required, between the value and the unit.
* @param text String; the textual representation to parse into a Power
* @return Power; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static Power valueOf(final String text)
{
Throw.whenNull(text, "Error parsing Power: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Power: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
PowerUnit unit = PowerUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new Power(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing Power from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a Power based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return Power; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static Power of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing Power: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Power: empty unitString");
PowerUnit unit = PowerUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new Power(value, unit);
}
throw new IllegalArgumentException("Error parsing Power with unit " + unitString);
}
/**
* Calculate the division of Power and Power, which results in a Dimensionless scalar.
* @param v Power; scalar
* @return Dimensionless; scalar as a division of Power and Power
*/
public final Dimensionless divide(final Power v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Power and Duration, which results in a Energy scalar.
* @param v Power; scalar
* @return Energy; scalar as a multiplication of Power and Duration
*/
public final Energy times(final Duration v)
{
return new Energy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the division of Power and Frequency, which results in a Energy scalar.
* @param v Power; scalar
* @return Energy; scalar as a division of Power and Frequency
*/
public final Energy divide(final Frequency v)
{
return new Energy(this.si / v.si, EnergyUnit.SI);
}
/**
* Calculate the division of Power and Energy, which results in a Frequency scalar.
* @param v Power; scalar
* @return Frequency; scalar as a division of Power and Energy
*/
public final Frequency divide(final Energy v)
{
return new Frequency(this.si / v.si, FrequencyUnit.SI);
}
/**
* Calculate the division of Power and Speed, which results in a Force scalar.
* @param v Power; scalar
* @return Force; scalar as a division of Power and Speed
*/
public final Force divide(final Speed v)
{
return new Force(this.si / v.si, ForceUnit.SI);
}
/**
* Calculate the division of Power and Force, which results in a Speed scalar.
* @param v Power; scalar
* @return Speed; scalar as a division of Power and Force
*/
public final Speed divide(final Force v)
{
return new Speed(this.si / v.si, SpeedUnit.SI);
}
/**
* Calculate the division of Power and ElectricalPotential, which results in a ElectricalCurrent scalar.
* @param v Power; scalar
* @return ElectricalCurrent; scalar as a division of Power and ElectricalPotential
*/
public final ElectricalCurrent divide(final ElectricalPotential v)
{
return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
/**
* Calculate the division of Power and ElectricalCurrent, which results in a ElectricalPotential scalar.
* @param v Power; scalar
* @return ElectricalPotential; scalar as a division of Power and ElectricalCurrent
*/
public final ElectricalPotential divide(final ElectricalCurrent v)
{
return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
}
/**
* Calculate the division of Power and Acceleration, which results in a Momentum scalar.
* @param v Power; scalar
* @return Momentum; scalar as a division of Power and Acceleration
*/
public final Momentum divide(final Acceleration v)
{
return new Momentum(this.si / v.si, MomentumUnit.SI);
}
/**
* Calculate the division of Power and Momentum, which results in a Acceleration scalar.
* @param v Power; scalar
* @return Acceleration; scalar as a division of Power and Momentum
*/
public final Acceleration divide(final Momentum v)
{
return new Acceleration(this.si / v.si, AccelerationUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}