Mass.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.DensityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MomentumUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.unit.si.SIPrefixes;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the Mass DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class Mass extends DoubleScalarRel<MassUnit, Mass>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final Mass ZERO = new Mass(0.0, MassUnit.SI);
/** Constant with value one. */
public static final Mass ONE = new Mass(1.0, MassUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Mass NaN = new Mass(Double.NaN, MassUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final Mass POSITIVE_INFINITY = new Mass(Double.POSITIVE_INFINITY, MassUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final Mass NEGATIVE_INFINITY = new Mass(Double.NEGATIVE_INFINITY, MassUnit.SI);
/** Constant with value MAX_VALUE. */
public static final Mass POS_MAXVALUE = new Mass(Double.MAX_VALUE, MassUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final Mass NEG_MAXVALUE = new Mass(-Double.MAX_VALUE, MassUnit.SI);
/**
* Construct Mass scalar.
* @param value double; the double value
* @param unit MassUnit; unit for the double value
*/
public Mass(final double value, final MassUnit unit)
{
super(value, unit);
}
/**
* Construct Mass scalar.
* @param value Mass; Scalar from which to construct this instance
*/
public Mass(final Mass value)
{
super(value);
}
@Override
public final Mass instantiateRel(final double value, final MassUnit unit)
{
return new Mass(value, unit);
}
/**
* Construct Mass scalar.
* @param value double; the double value in SI units
* @return Mass; the new scalar with the SI value
*/
public static final Mass instantiateSI(final double value)
{
return new Mass(value, MassUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Mass; the low value
* @param one Mass; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return Mass; a Scalar at the ratio between
*/
public static Mass interpolate(final Mass zero, final Mass one, final double ratio)
{
return new Mass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @return Mass; the maximum value of two relative scalars
*/
public static Mass max(final Mass r1, final Mass r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @param rn Mass...; the other scalars
* @return Mass; the maximum value of more than two relative scalars
*/
public static Mass max(final Mass r1, final Mass r2, final Mass... rn)
{
Mass maxr = r1.gt(r2) ? r1 : r2;
for (Mass r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @return Mass; the minimum value of two relative scalars
*/
public static Mass min(final Mass r1, final Mass r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Mass; the first scalar
* @param r2 Mass; the second scalar
* @param rn Mass...; the other scalars
* @return Mass; the minimum value of more than two relative scalars
*/
public static Mass min(final Mass r1, final Mass r2, final Mass... rn)
{
Mass minr = r1.lt(r2) ? r1 : r2;
for (Mass r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a Mass representation of a textual representation of a value with a unit. The String representation that can be
* parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are allowed,
* but not required, between the value and the unit.
* @param text String; the textual representation to parse into a Mass
* @return Mass; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static Mass valueOf(final String text)
{
Throw.whenNull(text, "Error parsing Mass: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new Mass(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing Mass from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a Mass based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return Mass; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static Mass of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing Mass: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Mass: empty unitString");
MassUnit unit = MassUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new Mass(value, unit);
}
throw new IllegalArgumentException("Error parsing Mass with unit " + unitString);
}
@Override
public String toStringSIPrefixed(final int smallestPower, final int biggestPower)
{
if (!Double.isFinite(this.si))
{
return toString(getDisplayUnit().getStandardUnit());
}
// PK: I can't think of an easier way to figure out what the exponent will be; rounding of the mantissa to the available
// width makes this hard; This feels like an expensive way.
String check = String.format(this.si >= 0 ? "%10.8E" : "%10.7E", this.si);
int exponent = Integer.parseInt(check.substring(check.indexOf("E") + 1));
if (exponent < -27 || exponent < smallestPower || exponent > 21 + 2 || exponent > biggestPower)
{
// Out of SI prefix range; do not scale.
return String.format(this.si >= 0 ? "%10.4E" : "%10.3E", this.si) + " "
+ getDisplayUnit().getStandardUnit().getId();
}
Integer roundedExponent = (int) Math.ceil((exponent - 2.0) / 3) * 3 + 3;
// System.out.print(String.format("exponent=%d; roundedExponent=%d ", exponent, roundedExponent));
String key = SIPrefixes.FACTORS.get(roundedExponent).getDefaultTextualPrefix() + "g";
MassUnit displayUnit = getDisplayUnit().getQuantity().getUnitByAbbreviation(key);
return toString(displayUnit);
}
/**
* Calculate the division of Mass and Mass, which results in a Dimensionless scalar.
* @param v Mass; scalar
* @return Dimensionless; scalar as a division of Mass and Mass
*/
public final Dimensionless divide(final Mass v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of Mass and FlowMass, which results in a Duration scalar.
* @param v Mass; scalar
* @return Duration; scalar as a division of Mass and FlowMass
*/
public final Duration divide(final FlowMass v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of Mass and Duration, which results in a FlowMass scalar.
* @param v Mass; scalar
* @return FlowMass; scalar as a division of Mass and Duration
*/
public final FlowMass divide(final Duration v)
{
return new FlowMass(this.si / v.si, FlowMassUnit.SI);
}
/**
* Calculate the multiplication of Mass and Acceleration, which results in a Force scalar.
* @param v Mass; scalar
* @return Force; scalar as a multiplication of Mass and Acceleration
*/
public final Force times(final Acceleration v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of Mass and Frequency, which results in a FlowMass scalar.
* @param v Mass; scalar
* @return FlowMass; scalar as a multiplication of Mass and Frequency
*/
public final FlowMass times(final Frequency v)
{
return new FlowMass(this.si * v.si, FlowMassUnit.SI);
}
/**
* Calculate the division of Mass and Density, which results in a Volume scalar.
* @param v Mass; scalar
* @return Volume; scalar as a division of Mass and Density
*/
public final Volume divide(final Density v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of Mass and Volume, which results in a Density scalar.
* @param v Mass; scalar
* @return Density; scalar as a division of Mass and Volume
*/
public final Density divide(final Volume v)
{
return new Density(this.si / v.si, DensityUnit.SI);
}
/**
* Calculate the multiplication of Mass and Speed, which results in a Momentum scalar.
* @param v Mass; scalar
* @return Momentum; scalar as a multiplication of Mass and Speed
*/
public final Momentum times(final Speed v)
{
return new Momentum(this.si * v.si, MomentumUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}