ElectricalPotential.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.ElectricalResistanceUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the ElectricalPotential DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class ElectricalPotential extends DoubleScalarRel<ElectricalPotentialUnit, ElectricalPotential>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final ElectricalPotential ZERO = new ElectricalPotential(0.0, ElectricalPotentialUnit.SI);
/** Constant with value one. */
public static final ElectricalPotential ONE = new ElectricalPotential(1.0, ElectricalPotentialUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final ElectricalPotential NaN = new ElectricalPotential(Double.NaN, ElectricalPotentialUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final ElectricalPotential POSITIVE_INFINITY =
new ElectricalPotential(Double.POSITIVE_INFINITY, ElectricalPotentialUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final ElectricalPotential NEGATIVE_INFINITY =
new ElectricalPotential(Double.NEGATIVE_INFINITY, ElectricalPotentialUnit.SI);
/** Constant with value MAX_VALUE. */
public static final ElectricalPotential POS_MAXVALUE =
new ElectricalPotential(Double.MAX_VALUE, ElectricalPotentialUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final ElectricalPotential NEG_MAXVALUE =
new ElectricalPotential(-Double.MAX_VALUE, ElectricalPotentialUnit.SI);
/**
* Construct ElectricalPotential scalar.
* @param value double; the double value
* @param unit ElectricalPotentialUnit; unit for the double value
*/
public ElectricalPotential(final double value, final ElectricalPotentialUnit unit)
{
super(value, unit);
}
/**
* Construct ElectricalPotential scalar.
* @param value ElectricalPotential; Scalar from which to construct this instance
*/
public ElectricalPotential(final ElectricalPotential value)
{
super(value);
}
@Override
public final ElectricalPotential instantiateRel(final double value, final ElectricalPotentialUnit unit)
{
return new ElectricalPotential(value, unit);
}
/**
* Construct ElectricalPotential scalar.
* @param value double; the double value in SI units
* @return ElectricalPotential; the new scalar with the SI value
*/
public static final ElectricalPotential instantiateSI(final double value)
{
return new ElectricalPotential(value, ElectricalPotentialUnit.SI);
}
/**
* Interpolate between two values.
* @param zero ElectricalPotential; the low value
* @param one ElectricalPotential; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return ElectricalPotential; a Scalar at the ratio between
*/
public static ElectricalPotential interpolate(final ElectricalPotential zero, final ElectricalPotential one,
final double ratio)
{
return new ElectricalPotential(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @return ElectricalPotential; the maximum value of two relative scalars
*/
public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @param rn ElectricalPotential...; the other scalars
* @return ElectricalPotential; the maximum value of more than two relative scalars
*/
public static ElectricalPotential max(final ElectricalPotential r1, final ElectricalPotential r2,
final ElectricalPotential... rn)
{
ElectricalPotential maxr = r1.gt(r2) ? r1 : r2;
for (ElectricalPotential r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @return ElectricalPotential; the minimum value of two relative scalars
*/
public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 ElectricalPotential; the first scalar
* @param r2 ElectricalPotential; the second scalar
* @param rn ElectricalPotential...; the other scalars
* @return ElectricalPotential; the minimum value of more than two relative scalars
*/
public static ElectricalPotential min(final ElectricalPotential r1, final ElectricalPotential r2,
final ElectricalPotential... rn)
{
ElectricalPotential minr = r1.lt(r2) ? r1 : r2;
for (ElectricalPotential r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a ElectricalPotential representation of a textual representation of a value with a unit. The String
* representation that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the
* unit. Spaces are allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a ElectricalPotential
* @return ElectricalPotential; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static ElectricalPotential valueOf(final String text)
{
Throw.whenNull(text, "Error parsing ElectricalPotential: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class,
"Error parsing ElectricalPotential: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new ElectricalPotential(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing ElectricalPotential from " + text + " using Locale "
+ Locale.getDefault(Locale.Category.FORMAT), exception);
}
}
/**
* Returns a ElectricalPotential based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return ElectricalPotential; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static ElectricalPotential of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing ElectricalPotential: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing ElectricalPotential: empty unitString");
ElectricalPotentialUnit unit = ElectricalPotentialUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new ElectricalPotential(value, unit);
}
throw new IllegalArgumentException("Error parsing ElectricalPotential with unit " + unitString);
}
/**
* Calculate the division of ElectricalPotential and ElectricalPotential, which results in a Dimensionless scalar.
* @param v ElectricalPotential; scalar
* @return Dimensionless; scalar as a division of ElectricalPotential and ElectricalPotential
*/
public final Dimensionless divide(final ElectricalPotential v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of ElectricalPotential and ElectricalCurrent, which results in a Power scalar.
* @param v ElectricalPotential; scalar
* @return Power; scalar as a multiplication of ElectricalPotential and ElectricalCurrent
*/
public final Power times(final ElectricalCurrent v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of ElectricalPotential and ElectricalCurrent, which results in a ElectricalResistance scalar.
* @param v ElectricalPotential; scalar
* @return ElectricalResistance; scalar as a division of ElectricalPotential and ElectricalCurrent
*/
public final ElectricalResistance divide(final ElectricalCurrent v)
{
return new ElectricalResistance(this.si / v.si, ElectricalResistanceUnit.SI);
}
/**
* Calculate the division of ElectricalPotential and ElectricalResistance, which results in a ElectricalCurrent scalar.
* @param v ElectricalPotential; scalar
* @return ElectricalCurrent; scalar as a division of ElectricalPotential and ElectricalResistance
*/
public final ElectricalCurrent divide(final ElectricalResistance v)
{
return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
/**
* Calculate the multiplication of ElectricalPotential and Duration, which results in a MagneticFlux scalar.
* @param v ElectricalPotential; scalar
* @return MagneticFlux; scalar as a multiplication of ElectricalPotential and Duration
*/
public final MagneticFlux times(final Duration v)
{
return new MagneticFlux(this.si * v.si, MagneticFluxUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}