ElectricalCurrent.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.ElectricalConductanceUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalar;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRel;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the ElectricalCurrent DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class ElectricalCurrent extends DoubleScalarRel<ElectricalCurrentUnit, ElectricalCurrent>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final ElectricalCurrent ZERO = new ElectricalCurrent(0.0, ElectricalCurrentUnit.SI);
/** Constant with value one. */
public static final ElectricalCurrent ONE = new ElectricalCurrent(1.0, ElectricalCurrentUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final ElectricalCurrent NaN = new ElectricalCurrent(Double.NaN, ElectricalCurrentUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final ElectricalCurrent POSITIVE_INFINITY =
new ElectricalCurrent(Double.POSITIVE_INFINITY, ElectricalCurrentUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final ElectricalCurrent NEGATIVE_INFINITY =
new ElectricalCurrent(Double.NEGATIVE_INFINITY, ElectricalCurrentUnit.SI);
/** Constant with value MAX_VALUE. */
public static final ElectricalCurrent POS_MAXVALUE = new ElectricalCurrent(Double.MAX_VALUE, ElectricalCurrentUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final ElectricalCurrent NEG_MAXVALUE = new ElectricalCurrent(-Double.MAX_VALUE, ElectricalCurrentUnit.SI);
/**
* Construct ElectricalCurrent scalar.
* @param value double; the double value
* @param unit ElectricalCurrentUnit; unit for the double value
*/
public ElectricalCurrent(final double value, final ElectricalCurrentUnit unit)
{
super(value, unit);
}
/**
* Construct ElectricalCurrent scalar.
* @param value ElectricalCurrent; Scalar from which to construct this instance
*/
public ElectricalCurrent(final ElectricalCurrent value)
{
super(value);
}
@Override
public final ElectricalCurrent instantiateRel(final double value, final ElectricalCurrentUnit unit)
{
return new ElectricalCurrent(value, unit);
}
/**
* Construct ElectricalCurrent scalar.
* @param value double; the double value in SI units
* @return ElectricalCurrent; the new scalar with the SI value
*/
public static final ElectricalCurrent instantiateSI(final double value)
{
return new ElectricalCurrent(value, ElectricalCurrentUnit.SI);
}
/**
* Interpolate between two values.
* @param zero ElectricalCurrent; the low value
* @param one ElectricalCurrent; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return ElectricalCurrent; a Scalar at the ratio between
*/
public static ElectricalCurrent interpolate(final ElectricalCurrent zero, final ElectricalCurrent one, final double ratio)
{
return new ElectricalCurrent(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 ElectricalCurrent; the first scalar
* @param r2 ElectricalCurrent; the second scalar
* @return ElectricalCurrent; the maximum value of two relative scalars
*/
public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 ElectricalCurrent; the first scalar
* @param r2 ElectricalCurrent; the second scalar
* @param rn ElectricalCurrent...; the other scalars
* @return ElectricalCurrent; the maximum value of more than two relative scalars
*/
public static ElectricalCurrent max(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
{
ElectricalCurrent maxr = r1.gt(r2) ? r1 : r2;
for (ElectricalCurrent r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 ElectricalCurrent; the first scalar
* @param r2 ElectricalCurrent; the second scalar
* @return ElectricalCurrent; the minimum value of two relative scalars
*/
public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 ElectricalCurrent; the first scalar
* @param r2 ElectricalCurrent; the second scalar
* @param rn ElectricalCurrent...; the other scalars
* @return ElectricalCurrent; the minimum value of more than two relative scalars
*/
public static ElectricalCurrent min(final ElectricalCurrent r1, final ElectricalCurrent r2, final ElectricalCurrent... rn)
{
ElectricalCurrent minr = r1.lt(r2) ? r1 : r2;
for (ElectricalCurrent r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a ElectricalCurrent representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces
* are allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a ElectricalCurrent
* @return ElectricalCurrent; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static ElectricalCurrent valueOf(final String text)
{
Throw.whenNull(text, "Error parsing ElectricalCurrent: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing ElectricalCurrent: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new ElectricalCurrent(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing ElectricalCurrent from " + text + " using Locale "
+ Locale.getDefault(Locale.Category.FORMAT), exception);
}
}
/**
* Returns a ElectricalCurrent based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return ElectricalCurrent; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static ElectricalCurrent of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing ElectricalCurrent: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing ElectricalCurrent: empty unitString");
ElectricalCurrentUnit unit = ElectricalCurrentUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new ElectricalCurrent(value, unit);
}
throw new IllegalArgumentException("Error parsing ElectricalCurrent with unit " + unitString);
}
/**
* Calculate the division of ElectricalCurrent and ElectricalCurrent, which results in a Dimensionless scalar.
* @param v ElectricalCurrent; scalar
* @return Dimensionless; scalar as a division of ElectricalCurrent and ElectricalCurrent
*/
public final Dimensionless divide(final ElectricalCurrent v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and ElectricalPotential, which results in a Power scalar.
* @param v ElectricalCurrent; scalar
* @return Power; scalar as a multiplication of ElectricalCurrent and ElectricalPotential
*/
public final Power times(final ElectricalPotential v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and Duration, which results in a ElectricalCharge scalar.
* @param v ElectricalCurrent; scalar
* @return ElectricalCharge; scalar as a multiplication of ElectricalCurrent and Duration
*/
public final ElectricalCharge times(final Duration v)
{
return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
}
/**
* Calculate the multiplication of ElectricalCurrent and ElectricalResistance, which results in a ElectricalPotential
* scalar.
* @param v ElectricalCurrent; scalar
* @return ElectricalPotential; scalar as a multiplication of ElectricalCurrent and ElectricalResistance
*/
public final ElectricalPotential times(final ElectricalResistance v)
{
return new ElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
}
/**
* Calculate the division of ElectricalCurrent and ElectricalPotential, which results in a ElectricalConductance scalar.
* @param v ElectricalCurrent; scalar
* @return ElectricalConductance; scalar as a division of ElectricalCurrent and ElectricalPotential
*/
public final ElectricalConductance divide(final ElectricalPotential v)
{
return new ElectricalConductance(this.si / v.si, ElectricalConductanceUnit.SI);
}
/**
* Calculate the division of ElectricalCurrent and ElectricalConductance, which results in a ElectricalPotential scalar.
* @param v ElectricalCurrent; scalar
* @return ElectricalPotential; scalar as a division of ElectricalCurrent and ElectricalConductance
*/
public final ElectricalPotential divide(final ElectricalConductance v)
{
return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
}
@Override
public SIScalar reciprocal()
{
return DoubleScalar.divide(Dimensionless.ONE, this);
}
}