Duration.java
package org.djunits.value.vdouble.scalar;
import java.util.Locale;
import org.djunits.unit.AngleUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalCapacitanceUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.ElectricalInductanceUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.TimeUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.vdouble.scalar.base.DoubleScalarRelWithAbs;
import org.djutils.base.NumberParser;
import org.djutils.exceptions.Throw;
import jakarta.annotation.Generated;
/**
* Easy access methods for the Relative Duration DoubleScalar.
* <p>
* Copyright (c) 2013-2024 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2023-07-23T14:06:38.224104100Z")
public class Duration extends DoubleScalarRelWithAbs<TimeUnit, Time, DurationUnit, Duration>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final Duration ZERO = new Duration(0.0, DurationUnit.SI);
/** Constant with value one. */
public static final Duration ONE = new Duration(1.0, DurationUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Duration NaN = new Duration(Double.NaN, DurationUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final Duration POSITIVE_INFINITY = new Duration(Double.POSITIVE_INFINITY, DurationUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final Duration NEGATIVE_INFINITY = new Duration(Double.NEGATIVE_INFINITY, DurationUnit.SI);
/** Constant with value MAX_VALUE. */
public static final Duration POS_MAXVALUE = new Duration(Double.MAX_VALUE, DurationUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final Duration NEG_MAXVALUE = new Duration(-Double.MAX_VALUE, DurationUnit.SI);
/**
* Construct Duration scalar.
* @param value double; double value
* @param unit DurationUnit; unit for the double value
*/
public Duration(final double value, final DurationUnit unit)
{
super(value, unit);
}
/**
* Construct Duration scalar.
* @param value Duration; Scalar from which to construct this instance
*/
public Duration(final Duration value)
{
super(value);
}
@Override
public final Duration instantiateRel(final double value, final DurationUnit unit)
{
return new Duration(value, unit);
}
@Override
public final Time instantiateAbs(final double value, final TimeUnit unit)
{
return new Time(value, unit);
}
/**
* Construct Duration scalar.
* @param value double; the double value in SI units
* @return Duration; the new scalar with the SI value
*/
public static final Duration instantiateSI(final double value)
{
return new Duration(value, DurationUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Duration; the low value
* @param one Duration; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return Duration; a Scalar at the ratio between
*/
public static Duration interpolate(final Duration zero, final Duration one, final double ratio)
{
return new Duration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Duration; the first scalar
* @param r2 Duration; the second scalar
* @return Duration; the maximum value of two relative scalars
*/
public static Duration max(final Duration r1, final Duration r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Duration; the first scalar
* @param r2 Duration; the second scalar
* @param rn Duration...; the other scalars
* @return Duration; the maximum value of more than two relative scalars
*/
public static Duration max(final Duration r1, final Duration r2, final Duration... rn)
{
Duration maxr = r1.gt(r2) ? r1 : r2;
for (Duration r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Duration; the first scalar
* @param r2 Duration; the second scalar
* @return Duration; the minimum value of two relative scalars
*/
public static Duration min(final Duration r1, final Duration r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Duration; the first scalar
* @param r2 Duration; the second scalar
* @param rn Duration...; the other scalars
* @return Duration; the minimum value of more than two relative scalars
*/
public static Duration min(final Duration r1, final Duration r2, final Duration... rn)
{
Duration minr = r1.lt(r2) ? r1 : r2;
for (Duration r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a Duration representation of a textual representation of a value with a unit. The String representation that can
* be parsed is the double value in the unit, followed by a localized or English abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a Duration
* @return Duration; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static Duration valueOf(final String text)
{
Throw.whenNull(text, "Error parsing Duration: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Duration: empty text to parse");
try
{
NumberParser numberParser = new NumberParser().lenient().trailing();
double d = numberParser.parseDouble(text);
String unitString = text.substring(numberParser.getTrailingPosition()).trim();
DurationUnit unit = DurationUnit.BASE.getUnitByAbbreviation(unitString);
if (unit == null)
throw new IllegalArgumentException("Unit " + unitString + " not found");
return new Duration(d, unit);
}
catch (Exception exception)
{
throw new IllegalArgumentException(
"Error parsing Duration from " + text + " using Locale " + Locale.getDefault(Locale.Category.FORMAT),
exception);
}
}
/**
* Returns a Duration based on a value and the textual representation of the unit, which can be localized.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return Duration; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static Duration of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing Duration: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Duration: empty unitString");
DurationUnit unit = DurationUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new Duration(value, unit);
}
throw new IllegalArgumentException("Error parsing Duration with unit " + unitString);
}
/**
* Calculate the division of Duration and Duration, which results in a Dimensionless scalar.
* @param v Duration; scalar
* @return Dimensionless; scalar as a division of Duration and Duration
*/
public final Dimensionless divide(final Duration v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Duration and Frequency, which results in a Dimensionless scalar.
* @param v Duration; scalar
* @return Dimensionless; scalar as a multiplication of Duration and Frequency
*/
public final Dimensionless times(final Frequency v)
{
return new Dimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Duration and ElectricalCurrent, which results in a ElectricalCharge scalar.
* @param v Duration; scalar
* @return ElectricalCharge; scalar as a multiplication of Duration and ElectricalCurrent
*/
public final ElectricalCharge times(final ElectricalCurrent v)
{
return new ElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
}
/**
* Calculate the multiplication of Duration and FlowMass, which results in a Mass scalar.
* @param v Duration; scalar
* @return Mass; scalar as a multiplication of Duration and FlowMass
*/
public final Mass times(final FlowMass v)
{
return new Mass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the multiplication of Duration and FlowVolume, which results in a Volume scalar.
* @param v Duration; scalar
* @return Volume; scalar as a multiplication of Duration and FlowVolume
*/
public final Volume times(final FlowVolume v)
{
return new Volume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of Duration and Acceleration, which results in a Speed scalar.
* @param v Duration; scalar
* @return Speed; scalar as a multiplication of Duration and Acceleration
*/
public final Speed times(final Acceleration v)
{
return new Speed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of Duration and Power, which results in a Energy scalar.
* @param v Duration; scalar
* @return Energy; scalar as a multiplication of Duration and Power
*/
public final Energy times(final Power v)
{
return new Energy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the multiplication of Duration and Speed, which results in a Length scalar.
* @param v Duration; scalar
* @return Length; scalar as a multiplication of Duration and Speed
*/
public final Length times(final Speed v)
{
return new Length(this.si * v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of Duration and ElectricalPotential, which results in a MagneticFlux scalar.
* @param v Duration; scalar
* @return MagneticFlux; scalar as a multiplication of Duration and ElectricalPotential
*/
public final MagneticFlux times(final ElectricalPotential v)
{
return new MagneticFlux(this.si * v.si, MagneticFluxUnit.SI);
}
/**
* Calculate the multiplication of Duration and ElectricalResistance, which results in a ElectricalInductance scalar.
* @param v Duration; scalar
* @return ElectricalInductance; scalar as a multiplication of Duration and ElectricalResistance
*/
public final ElectricalInductance times(final ElectricalResistance v)
{
return new ElectricalInductance(this.si * v.si, ElectricalInductanceUnit.SI);
}
/**
* Calculate the multiplication of Duration and ElectricalConductance, which results in a ElectricalCapacitance scalar.
* @param v Duration; scalar
* @return ElectricalCapacitance; scalar as a multiplication of Duration and ElectricalConductance
*/
public final ElectricalCapacitance times(final ElectricalConductance v)
{
return new ElectricalCapacitance(this.si * v.si, ElectricalCapacitanceUnit.SI);
}
/**
* Calculate the multiplication of Duration and AngularVelocity, which results in a Angle scalar.
* @param v Duration; scalar
* @return Angle; scalar as a multiplication of Duration and AngularVelocity
*/
public final Angle times(final AngularVelocity v)
{
return new Angle(this.si * v.si, AngleUnit.SI);
}
/**
* Calculate the multiplication of Duration and AngularAcceleration, which results in a AngularVelocity scalar.
* @param v Duration; scalar
* @return AngularVelocity; scalar as a multiplication of Duration and AngularAcceleration
*/
public final AngularVelocity times(final AngularAcceleration v)
{
return new AngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
@Override
public Frequency reciprocal()
{
return Frequency.instantiateSI(1.0 / this.si);
}
}