FloatVolume.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.FlowVolumeUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
/**
* Easy access methods for the FloatVolume FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class FloatVolume extends AbstractFloatScalarRel<VolumeUnit, FloatVolume>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatVolume ZERO = new FloatVolume(0.0f, VolumeUnit.SI);
/** Constant with value one. */
public static final FloatVolume ONE = new FloatVolume(1.0f, VolumeUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatVolume NaN = new FloatVolume(Float.NaN, VolumeUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatVolume POSITIVE_INFINITY = new FloatVolume(Float.POSITIVE_INFINITY, VolumeUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatVolume NEGATIVE_INFINITY = new FloatVolume(Float.NEGATIVE_INFINITY, VolumeUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatVolume POS_MAXVALUE = new FloatVolume(Float.MAX_VALUE, VolumeUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatVolume NEG_MAXVALUE = new FloatVolume(-Float.MAX_VALUE, VolumeUnit.SI);
/**
* Construct FloatVolume scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatVolume(final float value, final VolumeUnit unit)
{
super(value, unit);
}
/**
* Construct FloatVolume scalar.
* @param value Scalar from which to construct this instance
*/
public FloatVolume(final FloatVolume value)
{
super(value);
}
/**
* Construct FloatVolume scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatVolume(final double value, final VolumeUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatVolume instantiateRel(final float value, final VolumeUnit unit)
{
return new FloatVolume(value, unit);
}
/**
* Construct FloatVolume scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatVolume instantiateSI(final float value)
{
return new FloatVolume(value, VolumeUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatVolume interpolate(final FloatVolume zero, final FloatVolume one, final float ratio)
{
return new FloatVolume(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatVolume max(final FloatVolume r1, final FloatVolume r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatVolume max(final FloatVolume r1, final FloatVolume r2, final FloatVolume... rn)
{
FloatVolume maxr = r1.gt(r2) ? r1 : r2;
for (FloatVolume r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatVolume min(final FloatVolume r1, final FloatVolume r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatVolume min(final FloatVolume r1, final FloatVolume r2, final FloatVolume... rn)
{
FloatVolume minr = r1.lt(r2) ? r1 : r2;
for (FloatVolume r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatVolume representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but
* not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatVolume
* @return FloatVolume; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatVolume valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatVolume: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatVolume: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
VolumeUnit unit = VolumeUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
float f = Float.parseFloat(valueString);
return new FloatVolume(f, unit);
}
}
throw new IllegalArgumentException("Error parsing FloatVolume from " + text);
}
/**
* Returns a FloatVolume based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatVolume; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatVolume of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatVolume: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatVolume: empty unitString");
VolumeUnit unit = VolumeUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatVolume(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatVolume with unit " + unitString);
}
/**
* Calculate the division of FloatVolume and FloatVolume, which results in a FloatDimensionless scalar.
* @param v FloatVolume scalar
* @return FloatDimensionless scalar as a division of FloatVolume and FloatVolume
*/
public final FloatDimensionless divide(final FloatVolume v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatVolume and FloatDensity, which results in a FloatMass scalar.
* @param v FloatVolume scalar
* @return FloatMass scalar as a multiplication of FloatVolume and FloatDensity
*/
public final FloatMass times(final FloatDensity v)
{
return new FloatMass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the multiplication of FloatVolume and FloatPressure, which results in a FloatEnergy scalar.
* @param v FloatVolume scalar
* @return FloatEnergy scalar as a multiplication of FloatVolume and FloatPressure
*/
public final FloatEnergy times(final FloatPressure v)
{
return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the division of FloatVolume and FloatLength, which results in a FloatArea scalar.
* @param v FloatVolume scalar
* @return FloatArea scalar as a division of FloatVolume and FloatLength
*/
public final FloatArea divide(final FloatLength v)
{
return new FloatArea(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of FloatVolume and FloatArea, which results in a FloatLength scalar.
* @param v FloatVolume scalar
* @return FloatLength scalar as a division of FloatVolume and FloatArea
*/
public final FloatLength divide(final FloatArea v)
{
return new FloatLength(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of FloatVolume and FloatLinearDensity, which results in a FloatArea scalar.
* @param v FloatVolume scalar
* @return FloatArea scalar as a multiplication of FloatVolume and FloatLinearDensity
*/
public final FloatArea times(final FloatLinearDensity v)
{
return new FloatArea(this.si * v.si, AreaUnit.SI);
}
/**
* Calculate the division of FloatVolume and FloatDuration, which results in a FloatFlowVolume scalar.
* @param v FloatVolume scalar
* @return FloatFlowVolume scalar as a division of FloatVolume and FloatDuration
*/
public final FloatFlowVolume divide(final FloatDuration v)
{
return new FloatFlowVolume(this.si / v.si, FlowVolumeUnit.SI);
}
/**
* Calculate the division of FloatVolume and FloatFlowVolume, which results in a FloatDuration scalar.
* @param v FloatVolume scalar
* @return FloatDuration scalar as a division of FloatVolume and FloatFlowVolume
*/
public final FloatDuration divide(final FloatFlowVolume v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
}