FloatTemperature.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.AbsoluteTemperatureUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.TemperatureUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRelWithAbs;
/**
* Easy access methods for the FloatTemperature FloatScalar.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class FloatTemperature extends
AbstractFloatScalarRelWithAbs<AbsoluteTemperatureUnit, FloatAbsoluteTemperature, TemperatureUnit, FloatTemperature>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatTemperature ZERO = new FloatTemperature(0.0f, TemperatureUnit.SI);
/** Constant with value one. */
public static final FloatTemperature ONE = new FloatTemperature(1.0f, TemperatureUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatTemperature NaN = new FloatTemperature(Float.NaN, TemperatureUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatTemperature POSITIVE_INFINITY = new FloatTemperature(Float.POSITIVE_INFINITY, TemperatureUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatTemperature NEGATIVE_INFINITY = new FloatTemperature(Float.NEGATIVE_INFINITY, TemperatureUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatTemperature POS_MAXVALUE = new FloatTemperature(Float.MAX_VALUE, TemperatureUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatTemperature NEG_MAXVALUE = new FloatTemperature(-Float.MAX_VALUE, TemperatureUnit.SI);
/**
* Construct FloatTemperature scalar.
* @param value float; the float value
* @param unit TemperatureUnit; unit for the float value
*/
public FloatTemperature(final float value, final TemperatureUnit unit)
{
super(value, unit);
}
/**
* Construct FloatTemperature scalar.
* @param value FloatTemperature; Scalar from which to construct this instance
*/
public FloatTemperature(final FloatTemperature value)
{
super(value);
}
/**
* Construct FloatTemperature scalar using a double value.
* @param value double; the double value
* @param unit TemperatureUnit; unit for the resulting float value
*/
public FloatTemperature(final double value, final TemperatureUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatTemperature instantiateRel(final float value, final TemperatureUnit unit)
{
return new FloatTemperature(value, unit);
}
/**
* Construct FloatTemperature scalar.
* @param value float; the float value in SI units
* @return FloatTemperature; the new scalar with the SI value
*/
public static final FloatTemperature instantiateSI(final float value)
{
return new FloatTemperature(value, TemperatureUnit.SI);
}
/** {@inheritDoc} */
@Override
public final FloatAbsoluteTemperature instantiateAbs(final float value, final AbsoluteTemperatureUnit unit)
{
return new FloatAbsoluteTemperature(value, unit);
}
/**
* Interpolate between two values.
* @param zero FloatTemperature; the low value
* @param one FloatTemperature; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return FloatTemperature; a Scalar at the ratio between
*/
public static FloatTemperature interpolate(final FloatTemperature zero, final FloatTemperature one, final float ratio)
{
return new FloatTemperature(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatTemperature; the first scalar
* @param r2 FloatTemperature; the second scalar
* @return FloatTemperature; the maximum value of two relative scalars
*/
public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatTemperature; the first scalar
* @param r2 FloatTemperature; the second scalar
* @param rn FloatTemperature...; the other scalars
* @return FloatTemperature; the maximum value of more than two relative scalars
*/
public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
{
FloatTemperature maxr = r1.gt(r2) ? r1 : r2;
for (FloatTemperature r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatTemperature; the first scalar
* @param r2 FloatTemperature; the second scalar
* @return FloatTemperature; the minimum value of two relative scalars
*/
public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatTemperature; the first scalar
* @param r2 FloatTemperature; the second scalar
* @param rn FloatTemperature...; the other scalars
* @return FloatTemperature; the minimum value of more than two relative scalars
*/
public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
{
FloatTemperature minr = r1.lt(r2) ? r1 : r2;
for (FloatTemperature r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatTemperature representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatTemperature
* @return FloatTemperature; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatTemperature valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatTemperature: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatTemperature: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
TemperatureUnit unit = TemperatureUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
float f = Float.parseFloat(valueString);
return new FloatTemperature(f, unit);
}
}
throw new IllegalArgumentException("Error parsing FloatTemperature from " + text);
}
/**
* Returns a FloatTemperature based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatTemperature; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatTemperature of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatTemperature: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatTemperature: empty unitString");
TemperatureUnit unit = TemperatureUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatTemperature(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatTemperature with unit " + unitString);
}
/**
* Calculate the division of FloatTemperature and FloatTemperature, which results in a FloatDimensionless scalar.
* @param v FloatTemperature scalar
* @return FloatDimensionless scalar as a division of FloatTemperature and FloatTemperature
*/
public final FloatDimensionless divide(final FloatTemperature v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
}