FloatRadioActivity.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.RadioActivityUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
/**
* Easy access methods for the FloatRadioActivity FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class FloatRadioActivity extends AbstractFloatScalarRel<RadioActivityUnit, FloatRadioActivity>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatRadioActivity ZERO = new FloatRadioActivity(0.0f, RadioActivityUnit.SI);
/** Constant with value one. */
public static final FloatRadioActivity ONE = new FloatRadioActivity(1.0f, RadioActivityUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatRadioActivity NaN = new FloatRadioActivity(Float.NaN, RadioActivityUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatRadioActivity POSITIVE_INFINITY =
new FloatRadioActivity(Float.POSITIVE_INFINITY, RadioActivityUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatRadioActivity NEGATIVE_INFINITY =
new FloatRadioActivity(Float.NEGATIVE_INFINITY, RadioActivityUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatRadioActivity POS_MAXVALUE = new FloatRadioActivity(Float.MAX_VALUE, RadioActivityUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatRadioActivity NEG_MAXVALUE = new FloatRadioActivity(-Float.MAX_VALUE, RadioActivityUnit.SI);
/**
* Construct FloatRadioActivity scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatRadioActivity(final float value, final RadioActivityUnit unit)
{
super(value, unit);
}
/**
* Construct FloatRadioActivity scalar.
* @param value Scalar from which to construct this instance
*/
public FloatRadioActivity(final FloatRadioActivity value)
{
super(value);
}
/**
* Construct FloatRadioActivity scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatRadioActivity(final double value, final RadioActivityUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatRadioActivity instantiateRel(final float value, final RadioActivityUnit unit)
{
return new FloatRadioActivity(value, unit);
}
/**
* Construct FloatRadioActivity scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatRadioActivity instantiateSI(final float value)
{
return new FloatRadioActivity(value, RadioActivityUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatRadioActivity interpolate(final FloatRadioActivity zero, final FloatRadioActivity one, final float ratio)
{
return new FloatRadioActivity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatRadioActivity max(final FloatRadioActivity r1, final FloatRadioActivity r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatRadioActivity max(final FloatRadioActivity r1, final FloatRadioActivity r2,
final FloatRadioActivity... rn)
{
FloatRadioActivity maxr = r1.gt(r2) ? r1 : r2;
for (FloatRadioActivity r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatRadioActivity min(final FloatRadioActivity r1, final FloatRadioActivity r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatRadioActivity min(final FloatRadioActivity r1, final FloatRadioActivity r2,
final FloatRadioActivity... rn)
{
FloatRadioActivity minr = r1.lt(r2) ? r1 : r2;
for (FloatRadioActivity r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatRadioActivity representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatRadioActivity
* @return FloatRadioActivity; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatRadioActivity valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatRadioActivity: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatRadioActivity: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
RadioActivityUnit unit = RadioActivityUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
float f = Float.parseFloat(valueString);
return new FloatRadioActivity(f, unit);
}
}
throw new IllegalArgumentException("Error parsing FloatRadioActivity from " + text);
}
/**
* Returns a FloatRadioActivity based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatRadioActivity; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatRadioActivity of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatRadioActivity: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatRadioActivity: empty unitString");
RadioActivityUnit unit = RadioActivityUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatRadioActivity(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatRadioActivity with unit " + unitString);
}
/**
* Calculate the division of FloatRadioActivity and FloatRadioActivity, which results in a FloatDimensionless scalar.
* @param v FloatRadioActivity scalar
* @return FloatDimensionless scalar as a division of FloatRadioActivity and FloatRadioActivity
*/
public final FloatDimensionless divide(final FloatRadioActivity v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
}