FloatFrequency.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.AccelerationUnit;
import org.djunits.unit.AngularAccelerationUnit;
import org.djunits.unit.AngularVelocityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
/**
* Easy access methods for the FloatFrequency FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class FloatFrequency extends AbstractFloatScalarRel<FrequencyUnit, FloatFrequency>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatFrequency ZERO = new FloatFrequency(0.0f, FrequencyUnit.SI);
/** Constant with value one. */
public static final FloatFrequency ONE = new FloatFrequency(1.0f, FrequencyUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatFrequency NaN = new FloatFrequency(Float.NaN, FrequencyUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatFrequency POSITIVE_INFINITY = new FloatFrequency(Float.POSITIVE_INFINITY, FrequencyUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatFrequency NEGATIVE_INFINITY = new FloatFrequency(Float.NEGATIVE_INFINITY, FrequencyUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatFrequency POS_MAXVALUE = new FloatFrequency(Float.MAX_VALUE, FrequencyUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatFrequency NEG_MAXVALUE = new FloatFrequency(-Float.MAX_VALUE, FrequencyUnit.SI);
/**
* Construct FloatFrequency scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatFrequency(final float value, final FrequencyUnit unit)
{
super(value, unit);
}
/**
* Construct FloatFrequency scalar.
* @param value Scalar from which to construct this instance
*/
public FloatFrequency(final FloatFrequency value)
{
super(value);
}
/**
* Construct FloatFrequency scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatFrequency(final double value, final FrequencyUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatFrequency instantiateRel(final float value, final FrequencyUnit unit)
{
return new FloatFrequency(value, unit);
}
/**
* Construct FloatFrequency scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatFrequency instantiateSI(final float value)
{
return new FloatFrequency(value, FrequencyUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatFrequency interpolate(final FloatFrequency zero, final FloatFrequency one, final float ratio)
{
return new FloatFrequency(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatFrequency max(final FloatFrequency r1, final FloatFrequency r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatFrequency max(final FloatFrequency r1, final FloatFrequency r2, final FloatFrequency... rn)
{
FloatFrequency maxr = r1.gt(r2) ? r1 : r2;
for (FloatFrequency r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatFrequency min(final FloatFrequency r1, final FloatFrequency r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatFrequency min(final FloatFrequency r1, final FloatFrequency r2, final FloatFrequency... rn)
{
FloatFrequency minr = r1.lt(r2) ? r1 : r2;
for (FloatFrequency r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatFrequency representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are
* allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatFrequency
* @return FloatFrequency; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatFrequency valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatFrequency: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing FloatFrequency: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
float f = Float.parseFloat(valueString);
return new FloatFrequency(f, unit);
}
}
throw new IllegalArgumentException("Error parsing FloatFrequency from " + text);
}
/**
* Returns a FloatFrequency based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatFrequency; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatFrequency of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatFrequency: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing FloatFrequency: empty unitString");
FrequencyUnit unit = FrequencyUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatFrequency(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatFrequency with unit " + unitString);
}
/**
* Calculate the division of FloatFrequency and FloatFrequency, which results in a FloatDimensionless scalar.
* @param v FloatFrequency scalar
* @return FloatDimensionless scalar as a division of FloatFrequency and FloatFrequency
*/
public final FloatDimensionless divide(final FloatFrequency v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatDuration, which results in a FloatDimensionless scalar.
* @param v FloatFrequency scalar
* @return FloatDimensionless scalar as a multiplication of FloatFrequency and FloatDuration
*/
public final FloatDimensionless times(final FloatDuration v)
{
return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatLength, which results in a FloatSpeed scalar.
* @param v FloatFrequency scalar
* @return FloatSpeed scalar as a multiplication of FloatFrequency and FloatLength
*/
public final FloatSpeed times(final FloatLength v)
{
return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatSpeed, which results in a FloatAcceleration scalar.
* @param v FloatFrequency scalar
* @return FloatAcceleration scalar as a multiplication of FloatFrequency and FloatSpeed
*/
public final FloatAcceleration times(final FloatSpeed v)
{
return new FloatAcceleration(this.si * v.si, AccelerationUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatEnergy, which results in a FloatPower scalar.
* @param v FloatFrequency scalar
* @return FloatPower scalar as a multiplication of FloatFrequency and FloatEnergy
*/
public final FloatPower times(final FloatEnergy v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatAngle, which results in a FloatAngularVelocity scalar.
* @param v FloatFrequency scalar
* @return FloatAngularVelocity scalar as a multiplication of FloatFrequency and FloatAngle
*/
public final FloatAngularVelocity times(final FloatAngle v)
{
return new FloatAngularVelocity(this.si * v.si, AngularVelocityUnit.SI);
}
/**
* Calculate the multiplication of FloatFrequency and FloatAngularVelocity, which results in a FloatAngularAcceleration
* scalar.
* @param v FloatFrequency scalar
* @return FloatAngularAcceleration scalar as a multiplication of FloatFrequency and FloatAngularVelocity
*/
public final FloatAngularAcceleration times(final FloatAngularVelocity v)
{
return new FloatAngularAcceleration(this.si * v.si, AngularAccelerationUnit.SI);
}
}