FloatElectricalResistance.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ElectricalInductanceUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.ElectricalResistanceUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vfloat.scalar.base.AbstractFloatScalarRel;
/**
* Easy access methods for the FloatElectricalResistance FloatScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class FloatElectricalResistance extends AbstractFloatScalarRel<ElectricalResistanceUnit, FloatElectricalResistance>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final FloatElectricalResistance ZERO = new FloatElectricalResistance(0.0f, ElectricalResistanceUnit.SI);
/** Constant with value one. */
public static final FloatElectricalResistance ONE = new FloatElectricalResistance(1.0f, ElectricalResistanceUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatElectricalResistance NaN = new FloatElectricalResistance(Float.NaN, ElectricalResistanceUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final FloatElectricalResistance POSITIVE_INFINITY =
new FloatElectricalResistance(Float.POSITIVE_INFINITY, ElectricalResistanceUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final FloatElectricalResistance NEGATIVE_INFINITY =
new FloatElectricalResistance(Float.NEGATIVE_INFINITY, ElectricalResistanceUnit.SI);
/** Constant with value MAX_VALUE. */
public static final FloatElectricalResistance POS_MAXVALUE =
new FloatElectricalResistance(Float.MAX_VALUE, ElectricalResistanceUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final FloatElectricalResistance NEG_MAXVALUE =
new FloatElectricalResistance(-Float.MAX_VALUE, ElectricalResistanceUnit.SI);
/**
* Construct FloatElectricalResistance scalar.
* @param value float; the float value
* @param unit unit for the float value
*/
public FloatElectricalResistance(final float value, final ElectricalResistanceUnit unit)
{
super(value, unit);
}
/**
* Construct FloatElectricalResistance scalar.
* @param value Scalar from which to construct this instance
*/
public FloatElectricalResistance(final FloatElectricalResistance value)
{
super(value);
}
/**
* Construct FloatElectricalResistance scalar using a double value.
* @param value double; the double value
* @param unit unit for the resulting float value
*/
public FloatElectricalResistance(final double value, final ElectricalResistanceUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatElectricalResistance instantiateRel(final float value, final ElectricalResistanceUnit unit)
{
return new FloatElectricalResistance(value, unit);
}
/**
* Construct FloatElectricalResistance scalar.
* @param value float; the float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatElectricalResistance instantiateSI(final float value)
{
return new FloatElectricalResistance(value, ElectricalResistanceUnit.SI);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatElectricalResistance interpolate(final FloatElectricalResistance zero,
final FloatElectricalResistance one, final float ratio)
{
return new FloatElectricalResistance(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatElectricalResistance max(final FloatElectricalResistance r1, final FloatElectricalResistance r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatElectricalResistance max(final FloatElectricalResistance r1, final FloatElectricalResistance r2,
final FloatElectricalResistance... rn)
{
FloatElectricalResistance maxr = r1.gt(r2) ? r1 : r2;
for (FloatElectricalResistance r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatElectricalResistance min(final FloatElectricalResistance r1, final FloatElectricalResistance r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatElectricalResistance min(final FloatElectricalResistance r1, final FloatElectricalResistance r2,
final FloatElectricalResistance... rn)
{
FloatElectricalResistance minr = r1.lt(r2) ? r1 : r2;
for (FloatElectricalResistance r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatElectricalResistance representation of a textual representation of a value with a unit. The String
* representation that can be parsed is the double value in the unit, followed by the official abbreviation of the unit.
* Spaces are allowed, but not required, between the value and the unit.
* @param text String; the textual representation to parse into a FloatElectricalResistance
* @return FloatElectricalResistance; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static FloatElectricalResistance valueOf(final String text)
{
Throw.whenNull(text, "Error parsing FloatElectricalResistance: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class,
"Error parsing FloatElectricalResistance: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
ElectricalResistanceUnit unit = ElectricalResistanceUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
float f = Float.parseFloat(valueString);
return new FloatElectricalResistance(f, unit);
}
}
throw new IllegalArgumentException("Error parsing FloatElectricalResistance from " + text);
}
/**
* Returns a FloatElectricalResistance based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return FloatElectricalResistance; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static FloatElectricalResistance of(final float value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing FloatElectricalResistance: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class,
"Error parsing FloatElectricalResistance: empty unitString");
ElectricalResistanceUnit unit = ElectricalResistanceUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new FloatElectricalResistance(value, unit);
}
throw new IllegalArgumentException("Error parsing FloatElectricalResistance with unit " + unitString);
}
/**
* Calculate the division of FloatElectricalResistance and FloatElectricalResistance, which results in a FloatDimensionless
* scalar.
* @param v FloatElectricalResistance scalar
* @return FloatDimensionless scalar as a division of FloatElectricalResistance and FloatElectricalResistance
*/
public final FloatDimensionless divide(final FloatElectricalResistance v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatElectricalResistance and FloatElectricalCurrent, which results in a
* FloatElectricalPotential scalar.
* @param v FloatElectricalResistance scalar
* @return FloatElectricalPotential scalar as a multiplication of FloatElectricalResistance and FloatElectricalCurrent
*/
public final FloatElectricalPotential times(final FloatElectricalCurrent v)
{
return new FloatElectricalPotential(this.si * v.si, ElectricalPotentialUnit.SI);
}
/**
* Calculate the multiplication of FloatElectricalResistance and FloatDuration, which results in a FloatElectricalInductance
* scalar.
* @param v FloatElectricalResistance scalar
* @return FloatElectricalInductance scalar as a multiplication of FloatElectricalResistance and FloatDuration
*/
public final FloatElectricalInductance times(final FloatDuration v)
{
return new FloatElectricalInductance(this.si * v.si, ElectricalInductanceUnit.SI);
}
}