MagneticFlux.java
package org.djunits.value.vdouble.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalCurrentUnit;
import org.djunits.unit.ElectricalInductanceUnit;
import org.djunits.unit.ElectricalPotentialUnit;
import org.djunits.unit.MagneticFluxDensityUnit;
import org.djunits.unit.MagneticFluxUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
/**
* Easy access methods for the MagneticFlux DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class MagneticFlux extends AbstractDoubleScalarRel<MagneticFluxUnit, MagneticFlux>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final MagneticFlux ZERO = new MagneticFlux(0.0, MagneticFluxUnit.SI);
/** Constant with value one. */
public static final MagneticFlux ONE = new MagneticFlux(1.0, MagneticFluxUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final MagneticFlux NaN = new MagneticFlux(Double.NaN, MagneticFluxUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final MagneticFlux POSITIVE_INFINITY = new MagneticFlux(Double.POSITIVE_INFINITY, MagneticFluxUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final MagneticFlux NEGATIVE_INFINITY = new MagneticFlux(Double.NEGATIVE_INFINITY, MagneticFluxUnit.SI);
/** Constant with value MAX_VALUE. */
public static final MagneticFlux POS_MAXVALUE = new MagneticFlux(Double.MAX_VALUE, MagneticFluxUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final MagneticFlux NEG_MAXVALUE = new MagneticFlux(-Double.MAX_VALUE, MagneticFluxUnit.SI);
/**
* Construct MagneticFlux scalar.
* @param value double; the double value
* @param unit MagneticFluxUnit; unit for the double value
*/
public MagneticFlux(final double value, final MagneticFluxUnit unit)
{
super(value, unit);
}
/**
* Construct MagneticFlux scalar.
* @param value MagneticFlux; Scalar from which to construct this instance
*/
public MagneticFlux(final MagneticFlux value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final MagneticFlux instantiateRel(final double value, final MagneticFluxUnit unit)
{
return new MagneticFlux(value, unit);
}
/**
* Construct MagneticFlux scalar.
* @param value double; the double value in SI units
* @return MagneticFlux; the new scalar with the SI value
*/
public static final MagneticFlux instantiateSI(final double value)
{
return new MagneticFlux(value, MagneticFluxUnit.SI);
}
/**
* Interpolate between two values.
* @param zero MagneticFlux; the low value
* @param one MagneticFlux; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return MagneticFlux; a Scalar at the ratio between
*/
public static MagneticFlux interpolate(final MagneticFlux zero, final MagneticFlux one, final double ratio)
{
return new MagneticFlux(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 MagneticFlux; the first scalar
* @param r2 MagneticFlux; the second scalar
* @return MagneticFlux; the maximum value of two relative scalars
*/
public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 MagneticFlux; the first scalar
* @param r2 MagneticFlux; the second scalar
* @param rn MagneticFlux...; the other scalars
* @return MagneticFlux; the maximum value of more than two relative scalars
*/
public static MagneticFlux max(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
{
MagneticFlux maxr = r1.gt(r2) ? r1 : r2;
for (MagneticFlux r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 MagneticFlux; the first scalar
* @param r2 MagneticFlux; the second scalar
* @return MagneticFlux; the minimum value of two relative scalars
*/
public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 MagneticFlux; the first scalar
* @param r2 MagneticFlux; the second scalar
* @param rn MagneticFlux...; the other scalars
* @return MagneticFlux; the minimum value of more than two relative scalars
*/
public static MagneticFlux min(final MagneticFlux r1, final MagneticFlux r2, final MagneticFlux... rn)
{
MagneticFlux minr = r1.lt(r2) ? r1 : r2;
for (MagneticFlux r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a MagneticFlux representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but
* not required, between the value and the unit.
* @param text String; the textual representation to parse into a MagneticFlux
* @return MagneticFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static MagneticFlux valueOf(final String text)
{
Throw.whenNull(text, "Error parsing MagneticFlux: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
double d = Double.parseDouble(valueString);
return new MagneticFlux(d, unit);
}
}
throw new IllegalArgumentException("Error parsing MagneticFlux from " + text);
}
/**
* Returns a MagneticFlux based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return MagneticFlux; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static MagneticFlux of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing MagneticFlux: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing MagneticFlux: empty unitString");
MagneticFluxUnit unit = MagneticFluxUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new MagneticFlux(value, unit);
}
throw new IllegalArgumentException("Error parsing MagneticFlux with unit " + unitString);
}
/**
* Calculate the division of MagneticFlux and MagneticFlux, which results in a Dimensionless scalar.
* @param v MagneticFlux scalar
* @return Dimensionless scalar as a division of MagneticFlux and MagneticFlux
*/
public final Dimensionless divide(final MagneticFlux v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of MagneticFlux and ElectricalPotential, which results in a Duration scalar.
* @param v MagneticFlux scalar
* @return Duration scalar as a division of MagneticFlux and ElectricalPotential
*/
public final Duration divide(final ElectricalPotential v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of MagneticFlux and Duration, which results in a ElectricalPotential scalar.
* @param v MagneticFlux scalar
* @return ElectricalPotential scalar as a division of MagneticFlux and Duration
*/
public final ElectricalPotential divide(final Duration v)
{
return new ElectricalPotential(this.si / v.si, ElectricalPotentialUnit.SI);
}
/**
* Calculate the division of MagneticFlux and Area, which results in a MagneticFluxDensity scalar.
* @param v MagneticFlux scalar
* @return MagneticFluxDensity scalar as a division of MagneticFlux and Area
*/
public final MagneticFluxDensity divide(final Area v)
{
return new MagneticFluxDensity(this.si / v.si, MagneticFluxDensityUnit.SI);
}
/**
* Calculate the division of MagneticFlux and MagneticFluxDensity, which results in a Area scalar.
* @param v MagneticFlux scalar
* @return Area scalar as a division of MagneticFlux and MagneticFluxDensity
*/
public final Area divide(final MagneticFluxDensity v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of MagneticFlux and ElectricalCurrent, which results in a ElectricalInductance scalar.
* @param v MagneticFlux scalar
* @return ElectricalInductance scalar as a division of MagneticFlux and ElectricalCurrent
*/
public final ElectricalInductance divide(final ElectricalCurrent v)
{
return new ElectricalInductance(this.si / v.si, ElectricalInductanceUnit.SI);
}
/**
* Calculate the division of MagneticFlux and ElectricalInductance, which results in a ElectricalCurrent scalar.
* @param v MagneticFlux scalar
* @return ElectricalCurrent scalar as a division of MagneticFlux and ElectricalInductance
*/
public final ElectricalCurrent divide(final ElectricalInductance v)
{
return new ElectricalCurrent(this.si / v.si, ElectricalCurrentUnit.SI);
}
}