LinearDensity.java
package org.djunits.value.vdouble.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.FrequencyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
/**
* Easy access methods for the LinearDensity DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class LinearDensity extends AbstractDoubleScalarRel<LinearDensityUnit, LinearDensity>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final LinearDensity ZERO = new LinearDensity(0.0, LinearDensityUnit.SI);
/** Constant with value one. */
public static final LinearDensity ONE = new LinearDensity(1.0, LinearDensityUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final LinearDensity NaN = new LinearDensity(Double.NaN, LinearDensityUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final LinearDensity POSITIVE_INFINITY = new LinearDensity(Double.POSITIVE_INFINITY, LinearDensityUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final LinearDensity NEGATIVE_INFINITY = new LinearDensity(Double.NEGATIVE_INFINITY, LinearDensityUnit.SI);
/** Constant with value MAX_VALUE. */
public static final LinearDensity POS_MAXVALUE = new LinearDensity(Double.MAX_VALUE, LinearDensityUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final LinearDensity NEG_MAXVALUE = new LinearDensity(-Double.MAX_VALUE, LinearDensityUnit.SI);
/**
* Construct LinearDensity scalar.
* @param value double; the double value
* @param unit LinearDensityUnit; unit for the double value
*/
public LinearDensity(final double value, final LinearDensityUnit unit)
{
super(value, unit);
}
/**
* Construct LinearDensity scalar.
* @param value LinearDensity; Scalar from which to construct this instance
*/
public LinearDensity(final LinearDensity value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final LinearDensity instantiateRel(final double value, final LinearDensityUnit unit)
{
return new LinearDensity(value, unit);
}
/**
* Construct LinearDensity scalar.
* @param value double; the double value in SI units
* @return LinearDensity; the new scalar with the SI value
*/
public static final LinearDensity instantiateSI(final double value)
{
return new LinearDensity(value, LinearDensityUnit.SI);
}
/**
* Interpolate between two values.
* @param zero LinearDensity; the low value
* @param one LinearDensity; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return LinearDensity; a Scalar at the ratio between
*/
public static LinearDensity interpolate(final LinearDensity zero, final LinearDensity one, final double ratio)
{
return new LinearDensity(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio,
zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 LinearDensity; the first scalar
* @param r2 LinearDensity; the second scalar
* @return LinearDensity; the maximum value of two relative scalars
*/
public static LinearDensity max(final LinearDensity r1, final LinearDensity r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 LinearDensity; the first scalar
* @param r2 LinearDensity; the second scalar
* @param rn LinearDensity...; the other scalars
* @return LinearDensity; the maximum value of more than two relative scalars
*/
public static LinearDensity max(final LinearDensity r1, final LinearDensity r2, final LinearDensity... rn)
{
LinearDensity maxr = r1.gt(r2) ? r1 : r2;
for (LinearDensity r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 LinearDensity; the first scalar
* @param r2 LinearDensity; the second scalar
* @return LinearDensity; the minimum value of two relative scalars
*/
public static LinearDensity min(final LinearDensity r1, final LinearDensity r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 LinearDensity; the first scalar
* @param r2 LinearDensity; the second scalar
* @param rn LinearDensity...; the other scalars
* @return LinearDensity; the minimum value of more than two relative scalars
*/
public static LinearDensity min(final LinearDensity r1, final LinearDensity r2, final LinearDensity... rn)
{
LinearDensity minr = r1.lt(r2) ? r1 : r2;
for (LinearDensity r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a LinearDensity representation of a textual representation of a value with a unit. The String representation that
* can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but
* not required, between the value and the unit.
* @param text String; the textual representation to parse into a LinearDensity
* @return LinearDensity; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static LinearDensity valueOf(final String text)
{
Throw.whenNull(text, "Error parsing LinearDensity: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing LinearDensity: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
double d = Double.parseDouble(valueString);
return new LinearDensity(d, unit);
}
}
throw new IllegalArgumentException("Error parsing LinearDensity from " + text);
}
/**
* Returns a LinearDensity based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return LinearDensity; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static LinearDensity of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing LinearDensity: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing LinearDensity: empty unitString");
LinearDensityUnit unit = LinearDensityUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new LinearDensity(value, unit);
}
throw new IllegalArgumentException("Error parsing LinearDensity with unit " + unitString);
}
/**
* Calculate the division of LinearDensity and LinearDensity, which results in a Dimensionless scalar.
* @param v LinearDensity scalar
* @return Dimensionless scalar as a division of LinearDensity and LinearDensity
*/
public final Dimensionless divide(final LinearDensity v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of LinearDensity and Area, which results in a Length scalar.
* @param v LinearDensity scalar
* @return Length scalar as a multiplication of LinearDensity and Area
*/
public final Length times(final Area v)
{
return new Length(this.si * v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of LinearDensity and Energy, which results in a Force scalar.
* @param v LinearDensity scalar
* @return Force scalar as a multiplication of LinearDensity and Energy
*/
public final Force times(final Energy v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of LinearDensity and Speed, which results in a Frequency scalar.
* @param v LinearDensity scalar
* @return Frequency scalar as a multiplication of LinearDensity and Speed
*/
public final Frequency times(final Speed v)
{
return new Frequency(this.si * v.si, FrequencyUnit.SI);
}
}