Length.java
package org.djunits.value.vdouble.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MomentumUnit;
import org.djunits.unit.PositionUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRelWithAbs;
/**
* Easy access methods for the Relative Length DoubleScalar.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="https://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class Length extends AbstractDoubleScalarRelWithAbs<PositionUnit, Position, LengthUnit, Length>
{
/** */
private static final long serialVersionUID = 20150901L;
/** Constant with value zero. */
public static final Length ZERO = new Length(0.0, LengthUnit.SI);
/** Constant with value one. */
public static final Length ONE = new Length(1.0, LengthUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Length NaN = new Length(Double.NaN, LengthUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final Length POSITIVE_INFINITY = new Length(Double.POSITIVE_INFINITY, LengthUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final Length NEGATIVE_INFINITY = new Length(Double.NEGATIVE_INFINITY, LengthUnit.SI);
/** Constant with value MAX_VALUE. */
public static final Length POS_MAXVALUE = new Length(Double.MAX_VALUE, LengthUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final Length NEG_MAXVALUE = new Length(-Double.MAX_VALUE, LengthUnit.SI);
/**
* Construct Length scalar.
* @param value double; double value
* @param unit LengthUnit; unit for the double value
*/
public Length(final double value, final LengthUnit unit)
{
super(value, unit);
}
/**
* Construct Length scalar.
* @param value Length; Scalar from which to construct this instance
*/
public Length(final Length value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Length instantiateRel(final double value, final LengthUnit unit)
{
return new Length(value, unit);
}
/** {@inheritDoc} */
@Override
public final Position instantiateAbs(final double value, final PositionUnit unit)
{
return new Position(value, unit);
}
/**
* Construct Length scalar.
* @param value double; the double value in SI units
* @return Length; the new scalar with the SI value
*/
public static final Length instantiateSI(final double value)
{
return new Length(value, LengthUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Length; the low value
* @param one Length; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return Length; a Scalar at the ratio between
*/
public static Length interpolate(final Length zero, final Length one, final double ratio)
{
return new Length(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Length; the first scalar
* @param r2 Length; the second scalar
* @return Length; the maximum value of two relative scalars
*/
public static Length max(final Length r1, final Length r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Length; the first scalar
* @param r2 Length; the second scalar
* @param rn Length...; the other scalars
* @return Length; the maximum value of more than two relative scalars
*/
public static Length max(final Length r1, final Length r2, final Length... rn)
{
Length maxr = r1.gt(r2) ? r1 : r2;
for (Length r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Length; the first scalar
* @param r2 Length; the second scalar
* @return Length; the minimum value of two relative scalars
*/
public static Length min(final Length r1, final Length r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Length; the first scalar
* @param r2 Length; the second scalar
* @param rn Length...; the other scalars
* @return Length; the minimum value of more than two relative scalars
*/
public static Length min(final Length r1, final Length r2, final Length... rn)
{
Length minr = r1.lt(r2) ? r1 : r2;
for (Length r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a Length representation of a textual representation of a value with a unit. The String representation that can be
* parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but not
* required, between the value and the unit.
* @param text String; the textual representation to parse into a Length
* @return Length; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static Length valueOf(final String text)
{
Throw.whenNull(text, "Error parsing Length: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Length: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
double d = Double.parseDouble(valueString);
return new Length(d, unit);
}
}
throw new IllegalArgumentException("Error parsing Length from " + text);
}
/**
* Returns a Length based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return Length; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static Length of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing Length: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Length: empty unitString");
LengthUnit unit = LengthUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new Length(value, unit);
}
throw new IllegalArgumentException("Error parsing Length with unit " + unitString);
}
/**
* Calculate the division of Length and Length, which results in a Dimensionless scalar.
* @param v Length scalar
* @return Dimensionless scalar as a division of Length and Length
*/
public final Dimensionless divide(final Length v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of Length and Length, which results in a Area scalar.
* @param v Length scalar
* @return Area scalar as a multiplication of Length and Length
*/
public final Area times(final Length v)
{
return new Area(this.si * v.si, AreaUnit.SI);
}
/**
* Calculate the division of Length and LinearDensity, which results in a Area scalar.
* @param v Length scalar
* @return Area scalar as a division of Length and LinearDensity
*/
public final Area divide(final LinearDensity v)
{
return new Area(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of Length and Area, which results in a LinearDensity scalar.
* @param v Length scalar
* @return LinearDensity scalar as a division of Length and Area
*/
public final LinearDensity divide(final Area v)
{
return new LinearDensity(this.si / v.si, LinearDensityUnit.SI);
}
/**
* Calculate the multiplication of Length and Area, which results in a Volume scalar.
* @param v Length scalar
* @return Volume scalar as a multiplication of Length and Area
*/
public final Volume times(final Area v)
{
return new Volume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of Length and Force, which results in a Energy scalar.
* @param v Length scalar
* @return Energy scalar as a multiplication of Length and Force
*/
public final Energy times(final Force v)
{
return new Energy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the multiplication of Length and Frequency, which results in a Speed scalar.
* @param v Length scalar
* @return Speed scalar as a multiplication of Length and Frequency
*/
public final Speed times(final Frequency v)
{
return new Speed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the division of Length and Duration, which results in a Speed scalar.
* @param v Length scalar
* @return Speed scalar as a division of Length and Duration
*/
public final Speed divide(final Duration v)
{
return new Speed(this.si / v.si, SpeedUnit.SI);
}
/**
* Calculate the division of Length and Speed, which results in a Duration scalar.
* @param v Length scalar
* @return Duration scalar as a division of Length and Speed
*/
public final Duration divide(final Speed v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the multiplication of Length and FlowMass, which results in a Momentum scalar.
* @param v Length scalar
* @return Momentum scalar as a multiplication of Length and FlowMass
*/
public final Momentum times(final FlowMass v)
{
return new Momentum(this.si * v.si, MomentumUnit.SI);
}
}