Energy.java
package org.djunits.value.vdouble.scalar;
import java.util.regex.Matcher;
import javax.annotation.Generated;
import org.djunits.Throw;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MomentumUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;
import org.djunits.value.util.ValueUtil;
import org.djunits.value.vdouble.scalar.base.AbstractDoubleScalarRel;
/**
* Easy access methods for the Energy DoubleScalar, which is relative by definition.
* <p>
* Copyright (c) 2013-2020 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="https://djunits.org/docs/license.html">DJUNITS License</a>.
* </p>
* @author <a href="https://www.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="https://www.tudelft.nl/staff/p.knoppers/">Peter Knoppers</a>
*/
@Generated(value = "org.djunits.generator.GenerateDJUNIT", date = "2020-01-19T15:21:24.964166400Z")
public class Energy extends AbstractDoubleScalarRel<EnergyUnit, Energy>
{
/** */
private static final long serialVersionUID = 20150905L;
/** Constant with value zero. */
public static final Energy ZERO = new Energy(0.0, EnergyUnit.SI);
/** Constant with value one. */
public static final Energy ONE = new Energy(1.0, EnergyUnit.SI);
/** Constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final Energy NaN = new Energy(Double.NaN, EnergyUnit.SI);
/** Constant with value POSITIVE_INFINITY. */
public static final Energy POSITIVE_INFINITY = new Energy(Double.POSITIVE_INFINITY, EnergyUnit.SI);
/** Constant with value NEGATIVE_INFINITY. */
public static final Energy NEGATIVE_INFINITY = new Energy(Double.NEGATIVE_INFINITY, EnergyUnit.SI);
/** Constant with value MAX_VALUE. */
public static final Energy POS_MAXVALUE = new Energy(Double.MAX_VALUE, EnergyUnit.SI);
/** Constant with value -MAX_VALUE. */
public static final Energy NEG_MAXVALUE = new Energy(-Double.MAX_VALUE, EnergyUnit.SI);
/**
* Construct Energy scalar.
* @param value double; the double value
* @param unit EnergyUnit; unit for the double value
*/
public Energy(final double value, final EnergyUnit unit)
{
super(value, unit);
}
/**
* Construct Energy scalar.
* @param value Energy; Scalar from which to construct this instance
*/
public Energy(final Energy value)
{
super(value);
}
/** {@inheritDoc} */
@Override
public final Energy instantiateRel(final double value, final EnergyUnit unit)
{
return new Energy(value, unit);
}
/**
* Construct Energy scalar.
* @param value double; the double value in SI units
* @return Energy; the new scalar with the SI value
*/
public static final Energy instantiateSI(final double value)
{
return new Energy(value, EnergyUnit.SI);
}
/**
* Interpolate between two values.
* @param zero Energy; the low value
* @param one Energy; the high value
* @param ratio double; the ratio between 0 and 1, inclusive
* @return Energy; a Scalar at the ratio between
*/
public static Energy interpolate(final Energy zero, final Energy one, final double ratio)
{
return new Energy(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getDisplayUnit()) * ratio, zero.getDisplayUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @return Energy; the maximum value of two relative scalars
*/
public static Energy max(final Energy r1, final Energy r2)
{
return r1.gt(r2) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @param rn Energy...; the other scalars
* @return Energy; the maximum value of more than two relative scalars
*/
public static Energy max(final Energy r1, final Energy r2, final Energy... rn)
{
Energy maxr = r1.gt(r2) ? r1 : r2;
for (Energy r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @return Energy; the minimum value of two relative scalars
*/
public static Energy min(final Energy r1, final Energy r2)
{
return r1.lt(r2) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 Energy; the first scalar
* @param r2 Energy; the second scalar
* @param rn Energy...; the other scalars
* @return Energy; the minimum value of more than two relative scalars
*/
public static Energy min(final Energy r1, final Energy r2, final Energy... rn)
{
Energy minr = r1.lt(r2) ? r1 : r2;
for (Energy r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a Energy representation of a textual representation of a value with a unit. The String representation that can be
* parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are allowed, but not
* required, between the value and the unit.
* @param text String; the textual representation to parse into a Energy
* @return Energy; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the text cannot be parsed
* @throws NullPointerException when the text argument is null
*/
public static Energy valueOf(final String text)
{
Throw.whenNull(text, "Error parsing Energy: text to parse is null");
Throw.when(text.length() == 0, IllegalArgumentException.class, "Error parsing Energy: empty text to parse");
Matcher matcher = ValueUtil.NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
double d = Double.parseDouble(valueString);
return new Energy(d, unit);
}
}
throw new IllegalArgumentException("Error parsing Energy from " + text);
}
/**
* Returns a Energy based on a value and the textual representation of the unit.
* @param value double; the value to use
* @param unitString String; the textual representation of the unit
* @return Energy; the Scalar representation of the value in its unit
* @throws IllegalArgumentException when the unit cannot be parsed or is incorrect
* @throws NullPointerException when the unitString argument is null
*/
public static Energy of(final double value, final String unitString)
{
Throw.whenNull(unitString, "Error parsing Energy: unitString is null");
Throw.when(unitString.length() == 0, IllegalArgumentException.class, "Error parsing Energy: empty unitString");
EnergyUnit unit = EnergyUnit.BASE.getUnitByAbbreviation(unitString);
if (unit != null)
{
return new Energy(value, unit);
}
throw new IllegalArgumentException("Error parsing Energy with unit " + unitString);
}
/**
* Calculate the division of Energy and Energy, which results in a Dimensionless scalar.
* @param v Energy scalar
* @return Dimensionless scalar as a division of Energy and Energy
*/
public final Dimensionless divide(final Energy v)
{
return new Dimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of Energy and Force, which results in a Length scalar.
* @param v Energy scalar
* @return Length scalar as a division of Energy and Force
*/
public final Length divide(final Force v)
{
return new Length(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the division of Energy and Length, which results in a Force scalar.
* @param v Energy scalar
* @return Force scalar as a division of Energy and Length
*/
public final Force divide(final Length v)
{
return new Force(this.si / v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of Energy and LinearDensity, which results in a Force scalar.
* @param v Energy scalar
* @return Force scalar as a multiplication of Energy and LinearDensity
*/
public final Force times(final LinearDensity v)
{
return new Force(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the division of Energy and Duration, which results in a Power scalar.
* @param v Energy scalar
* @return Power scalar as a division of Energy and Duration
*/
public final Power divide(final Duration v)
{
return new Power(this.si / v.si, PowerUnit.SI);
}
/**
* Calculate the division of Energy and Power, which results in a Duration scalar.
* @param v Energy scalar
* @return Duration scalar as a division of Energy and Power
*/
public final Duration divide(final Power v)
{
return new Duration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of Energy and Volume, which results in a Pressure scalar.
* @param v Energy scalar
* @return Pressure scalar as a division of Energy and Volume
*/
public final Pressure divide(final Volume v)
{
return new Pressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the division of Energy and Pressure, which results in a Volume scalar.
* @param v Energy scalar
* @return Volume scalar as a division of Energy and Pressure
*/
public final Volume divide(final Pressure v)
{
return new Volume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of Energy and Frequency, which results in a Power scalar.
* @param v Energy scalar
* @return Power scalar as a multiplication of Energy and Frequency
*/
public final Power times(final Frequency v)
{
return new Power(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the division of Energy and Speed, which results in a Momentum scalar.
* @param v Energy scalar
* @return Momentum scalar as a division of Energy and Speed
*/
public final Momentum divide(final Speed v)
{
return new Momentum(this.si / v.si, MomentumUnit.SI);
}
/**
* Calculate the division of Energy and Momentum, which results in a Speed scalar.
* @param v Energy scalar
* @return Speed scalar as a division of Energy and Momentum
*/
public final Speed divide(final Momentum v)
{
return new Speed(this.si / v.si, SpeedUnit.SI);
}
}