FloatTemperature.java
package org.djunits.value.vfloat.scalar;
import java.util.regex.Matcher;
import org.djunits.unit.AbsoluteTemperatureUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.TemperatureUnit;
import org.djunits.unit.Unit;
/**
* Easy access methods for the %Type% FloatScalar. Instead of:
*
* <pre>
* FloatScalar.Rel<TemperatureUnit> value = new FloatScalar.Rel<TemperatureUnit>(100.0, TemperatureUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatTemperature value = new FloatTemperature(100.0, TemperatureUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* <p>
* $LastChangedDate: 2019-03-03 00:53:50 +0100 (Sun, 03 Mar 2019) $, @version $Revision: 349 $, by $Author: averbraeck $,
* initial version Sep 1, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatTemperature extends AbstractFloatScalarRel<TemperatureUnit, FloatTemperature>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatTemperature ZERO = new FloatTemperature(0.0f, TemperatureUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatTemperature NaN = new FloatTemperature(Float.NaN, TemperatureUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatTemperature POSITIVE_INFINITY = new FloatTemperature(Float.POSITIVE_INFINITY, TemperatureUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatTemperature NEGATIVE_INFINITY = new FloatTemperature(Float.NEGATIVE_INFINITY, TemperatureUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatTemperature POS_MAXVALUE = new FloatTemperature(Float.MAX_VALUE, TemperatureUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatTemperature NEG_MAXVALUE = new FloatTemperature(-Float.MAX_VALUE, TemperatureUnit.SI);
/**
* Construct FloatTemperature scalar.
* @param value float value
* @param unit unit for the float value
*/
public FloatTemperature(final float value, final TemperatureUnit unit)
{
super(value, unit);
}
/**
* Construct FloatTemperature scalar.
* @param value Scalar from which to construct this instance
*/
public FloatTemperature(final FloatTemperature value)
{
super(value);
}
/**
* Construct FloatTemperature scalar using a double value.
* @param value double value
* @param unit unit for the resulting float value
*/
public FloatTemperature(final double value, final TemperatureUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatTemperature instantiateRel(final float value, final TemperatureUnit unit)
{
return new FloatTemperature(value, unit);
}
/**
* Construct FloatTemperature scalar.
* @param value float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatTemperature createSI(final float value)
{
return new FloatTemperature(value, TemperatureUnit.SI);
}
/**
* Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
* @param value the float value
* @param unit the unit
* @return A a new absolute instance of the FloatScalar of the right type
*/
public final FloatAbsoluteTemperature instantiateAbs(final float value, final AbsoluteTemperatureUnit unit)
{
return new FloatAbsoluteTemperature(value, unit);
}
/**
* Interpolate between two values.
* @param zero the low value
* @param one the high value
* @param ratio the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatTemperature interpolate(final FloatTemperature zero, final FloatTemperature one, final float ratio)
{
return new FloatTemperature(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Relative scalar plus Absolute scalar = Absolute scalar.
* @param v the value to add
* @return sum of this value and v as a new object
*/
public final FloatAbsoluteTemperature plus(final FloatAbsoluteTemperature v)
{
AbsoluteTemperatureUnit targetUnit = v.getUnit();
return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
}
/**
* Return the maximum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
{
FloatTemperature maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatTemperature r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 the first scalar
* @param r2 the second scalar
* @param rn the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
{
FloatTemperature minr = (r1.lt(r2)) ? r1 : r2;
for (FloatTemperature r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Returns a FloatTemperature representation of a textual representation of a value with a unit. The String representation
* that can be parsed is the double value in the unit, followed by the official abbreviation of the unit. Spaces are
* allowed, but not necessary, between the value and the unit.
* @param text String; the textual representation to parse into a FloatTemperature
* @return the String representation of the value in its unit, followed by the official abbreviation of the unit
* @throws IllegalArgumentException when the text cannot be parsed
*/
public static FloatTemperature valueOf(final String text) throws IllegalArgumentException
{
if (text == null || text.length() == 0)
{
throw new IllegalArgumentException("Error parsing FloatTemperature -- null or empty argument");
}
Matcher matcher = NUMBER_PATTERN.matcher(text);
if (matcher.find())
{
int index = matcher.end();
try
{
String unitString = text.substring(index).trim();
String valueString = text.substring(0, index).trim();
for (TemperatureUnit unit : Unit.getUnits(TemperatureUnit.class))
{
if (unit.getDefaultLocaleTextualRepresentations().contains(unitString))
{
float f = Float.parseFloat(valueString);
return new FloatTemperature(f, unit);
}
}
}
catch (Exception exception)
{
throw new IllegalArgumentException("Error parsing FloatTemperature from " + text, exception);
}
}
throw new IllegalArgumentException("Error parsing FloatTemperature from " + text);
}
/**
* Calculate the division of FloatTemperature and FloatTemperature, which results in a FloatDimensionless scalar.
* @param v FloatTemperature scalar
* @return FloatDimensionless scalar as a division of FloatTemperature and FloatTemperature
*/
public final FloatDimensionless divideBy(final FloatTemperature v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
}