FloatMatrixDataSparse.java
package org.djunits.value.vfloat.matrix;
import java.util.Arrays;
import java.util.concurrent.atomic.AtomicInteger;
import java.util.stream.IntStream;
import org.djunits.value.StorageType;
import org.djunits.value.ValueException;
/**
* Stores sparse data for a FloatMatrix and carries out basic operations.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* </p>
* $LastChangedDate: 2015-07-24 02:58:59 +0200 (Fri, 24 Jul 2015) $, @version $Revision: 1147 $, by $Author: averbraeck $,
* initial version Oct 3, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatMatrixDataSparse extends FloatMatrixData
{
/** */
private static final long serialVersionUID = 1L;
/** the index values of the Matrix. */
private long[] indices;
/** the length of the vector (padded with 0 after highest index in indices). */
private final int length;
/**
* Create a vector with sparse data.
* @param matrixSI float[]; the data to store
* @param indices long[]; the index values of the Matrix, with <tt>index = row * cols + col</tt>
* @param length int; the length of the vector (padded with 0 after highest index in indices)
* @param rows int; the number of rows
* @param cols int; the number of columns
*/
public FloatMatrixDataSparse(final float[] matrixSI, final long[] indices, final int length, final int rows, final int cols)
{
super(StorageType.SPARSE);
this.matrixSI = matrixSI;
this.indices = indices;
this.length = length;
this.rows = rows;
this.cols = cols;
}
/**
* Create a vector with sparse data from an internal vector with dense data.
* @param denseSI float[]; the dense data to store
* @param rows int; the number of rows
* @param cols int; the number of columns
* @throws ValueException in case size is incorrect
*/
public FloatMatrixDataSparse(final float[] denseSI, final int rows, final int cols) throws ValueException
{
super(StorageType.SPARSE);
if (denseSI == null || denseSI.length == 0)
{
throw new ValueException("FloatMatrixDataSparse constructor, denseSI == null || denseSI.length == 0");
}
this.length = nonZero(denseSI);
this.rows = rows;
this.cols = cols;
this.matrixSI = new float[this.length];
this.indices = new long[this.length];
fill(denseSI, this.matrixSI, this.indices);
}
/**
* Create a vector with sparse data.
* @param dataSI float[][]; the data to store
* @throws ValueException in case matrix is ragged
*/
public FloatMatrixDataSparse(final float[][] dataSI) throws ValueException
{
super(StorageType.SPARSE);
if (dataSI == null || dataSI.length == 0)
{
throw new ValueException("FloatMatrixDataSparse constructor, matrixSI == null || matrixSI.length == 0");
}
this.length = nonZero(dataSI);
this.rows = dataSI.length;
this.cols = dataSI[0].length;
this.matrixSI = new float[this.length];
this.indices = new long[this.length];
fill(dataSI, this.matrixSI, this.indices);
}
/**
* Fill the sparse data structures matrixSI[] and indices[]. Note: output vectors have to be initialized at the right size.
* Cannot be parallelized because of stateful and sequence-sensitive count.
* @param data float[][]; the input data
* @param matrixSI float[]; the matrix data to write
* @param indices long[]; the indices to write
* @throws ValueException in case matrix is ragged
*/
@SuppressWarnings("checkstyle:finalparameters")
private static void fill(final float[][] data, float[] matrixSI, long[] indices) throws ValueException
{
int rows = data.length;
int cols = data[0].length;
int count = 0;
for (int r = 0; r < rows; r++)
{
float[] row = data[r];
if (row.length != cols)
{
throw new ValueException("Matrix is ragged");
}
for (int c = 0; c < cols; c++)
{
int index = r * cols + c;
if (row[c] != 0.0)
{
matrixSI[count] = row[c];
indices[count] = index;
count++;
}
}
}
}
/**
* Fill the sparse data structures matrixSI[] and indices[]. Note: output vectors have to be initialized at the right size.
* Cannot be parallelized because of stateful and sequence-sensitive count.
* @param data float[]; the input data
* @param matrixSI float[]; the matrix data to write
* @param indices long[]; the indices to write
*/
@SuppressWarnings("checkstyle:finalparameters")
private static void fill(final float[] data, float[] matrixSI, long[] indices)
{
int count = 0;
for (int i = 0; i < data.length; i++)
{
if (data[i] != 0.0)
{
matrixSI[count] = data[i];
indices[count] = i;
count++;
}
}
}
/** {@inheritDoc} */
@Override
public final FloatMatrixDataDense toDense()
{
float[] denseSI = new float[this.rows * this.cols];
for (int index = 0; index < this.matrixSI.length; index++)
{
denseSI[(int) this.indices[index]] = this.matrixSI[index];
}
try
{
return new FloatMatrixDataDense(denseSI, this.rows, this.cols);
}
catch (ValueException exception)
{
throw new RuntimeException(exception); // cannot happen -- denseSI has the right size
}
}
/** {@inheritDoc} */
@Override
public final float getSI(final int row, final int col)
{
long index = row * this.cols + col;
int internalIndex = Arrays.binarySearch(this.indices, index);
return internalIndex < 0 ? 0.0f : this.matrixSI[internalIndex];
}
/** {@inheritDoc} */
@Override
public final void setSI(final int row, final int col, final float valueSI)
{
long index = row * this.cols + col;
int internalIndex = Arrays.binarySearch(this.indices, index);
if (internalIndex >= 0)
{
this.matrixSI[internalIndex] = valueSI;
return;
}
// make room. TODO increase size in chunks
internalIndex = -internalIndex - 1;
long[] indicesNew = new long[this.indices.length + 1];
float[] matrixSINew = new float[this.matrixSI.length + 1];
System.arraycopy(this.indices, 0, indicesNew, 0, internalIndex);
System.arraycopy(this.matrixSI, 0, matrixSINew, 0, internalIndex);
System.arraycopy(this.indices, internalIndex, indicesNew, internalIndex - 1, this.indices.length - internalIndex);
System.arraycopy(this.matrixSI, internalIndex, matrixSINew, internalIndex - 1, this.indices.length - internalIndex);
indicesNew[internalIndex] = index;
matrixSINew[internalIndex] = valueSI;
this.indices = indicesNew;
this.matrixSI = matrixSINew;
}
/** {@inheritDoc} */
@Override
public final float[][] getDenseMatrixSI()
{
return toDense().getDenseMatrixSI();
}
/** {@inheritDoc} */
@Override
public final double[][] getDoubleDenseMatrixSI()
{
return toDense().getDoubleDenseMatrixSI();
}
/** {@inheritDoc} */
@Override
public final FloatMatrixDataSparse copy()
{
float[] vCopy = new float[this.matrixSI.length];
System.arraycopy(this.matrixSI, 0, vCopy, 0, this.matrixSI.length);
long[] iCopy = new long[this.indices.length];
System.arraycopy(this.indices, 0, iCopy, 0, this.indices.length);
return new FloatMatrixDataSparse(vCopy, iCopy, this.length, this.rows, this.cols);
}
/**
* Instantiate a FloatMatrixDataSparse from an array.
* @param valuesSI float[][]; the (SI) values to store
* @return the FloatMatrixDataSparse
* @throws ValueException in case matrix is ragged
*/
public static FloatMatrixDataSparse instantiate(final float[][] valuesSI) throws ValueException
{
int length = nonZero(valuesSI);
final int rows = valuesSI.length;
final int cols = valuesSI[0].length;
float[] sparseSI = new float[length];
long[] indices = new long[length];
fill(valuesSI, sparseSI, indices);
return new FloatMatrixDataSparse(sparseSI, indices, length, rows, cols);
}
/**
* Calculate the number of non-zero values in this float[][] matrix.
* @param valuesSI float[][]; the float[][] matrix
* @return the number of non-zero values in this float[][] matrix
*/
private static int nonZero(final float[][] valuesSI)
{
// determine number of non-null cells
AtomicInteger atomicLength = new AtomicInteger(0);
IntStream.range(0, valuesSI.length).parallel().forEach(r -> IntStream.range(0, valuesSI[0].length).forEach(c ->
{
if (valuesSI[r][c] != 0.0)
{
atomicLength.incrementAndGet();
}
}));
return atomicLength.get();
}
/**
* Calculate the number of non-zero values in this float[] vector.
* @param valuesSI float[]; the float[] vector
* @return the number of non-zero values in this float[] vector
*/
private static int nonZero(final float[] valuesSI)
{
return (int) IntStream.range(0, valuesSI.length).parallel().mapToDouble(i -> valuesSI[i]).filter(d -> d != 0.0).count();
}
/** {@inheritDoc} */
@Override
public final void incrementBy(final FloatMatrixData right) throws ValueException
{
/*-
// the number of new cells = the sum of the number of cells of each minus the overlapping cells.
int overlap = 0;
for (int index = 0; index < this.matrixSI.length; index++)
{
int c = (int) this.indices[index] % this.cols;
int r = (int) this.indices[index] / this.cols;
if (right.getSI(r, c) != 0.0)
{
overlap++;
}
}
int newLength = cardinality() + right.cardinality() - overlap;
*/
int newLength = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
if (this.getSI(r, c) + right.getSI(r, c) != 0.0)
{
newLength++;
}
}
}
float[] newMatrixSI = new float[newLength];
long[] newIndices = new long[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
float value = this.getSI(r, c) + right.getSI(r, c);
if (value != 0.0)
{
int index = r * cols() + c;
newMatrixSI[count] = value;
newIndices[count] = index;
count++;
}
}
}
this.indices = newIndices;
this.matrixSI = newMatrixSI;
}
/** {@inheritDoc} */
@Override
public final void decrementBy(final FloatMatrixData right) throws ValueException
{
int newLength = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
if (this.getSI(r, c) - right.getSI(r, c) != 0.0)
{
newLength++;
}
}
}
float[] newMatrixSI = new float[newLength];
long[] newIndices = new long[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
float value = this.getSI(r, c) - right.getSI(r, c);
if (value != 0.0)
{
int index = r * cols() + c;
newMatrixSI[count] = value;
newIndices[count] = index;
count++;
}
}
}
this.indices = newIndices;
this.matrixSI = newMatrixSI;
}
/** {@inheritDoc} */
@Override
public final void multiplyBy(final FloatMatrixData right) throws ValueException
{
int newLength = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
if (this.getSI(r, c) * right.getSI(r, c) != 0.0)
{
newLength++;
}
}
}
float[] newMatrixSI = new float[newLength];
long[] newIndices = new long[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
float value = this.getSI(r, c) * right.getSI(r, c);
if (value != 0.0)
{
int index = r * cols() + c;
newMatrixSI[count] = value;
newIndices[count] = index;
count++;
}
}
}
this.indices = newIndices;
this.matrixSI = newMatrixSI;
}
/** {@inheritDoc} */
@Override
public final void divideBy(final FloatMatrixData right) throws ValueException
{
int newLength = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
if (this.getSI(r, c) / right.getSI(r, c) != 0.0)
{
newLength++;
}
}
}
float[] newMatrixSI = new float[newLength];
long[] newIndices = new long[newLength];
// fill the sparse data structures. Cannot be parallelized because of stateful and sequence-sensitive count
int count = 0;
for (int r = 0; r < rows(); r++)
{
for (int c = 0; c < cols(); c++)
{
float value = this.getSI(r, c) / right.getSI(r, c);
if (value != 0.0)
{
int index = r * cols() + c;
newMatrixSI[count] = value;
newIndices[count] = index;
count++;
}
}
}
this.indices = newIndices;
this.matrixSI = newMatrixSI;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings("checkstyle:designforextension")
public int hashCode()
{
final int prime = 31;
int result = super.hashCode();
result = prime * result + Arrays.hashCode(this.indices);
result = prime * result + this.length;
return result;
}
/** {@inheritDoc} */
@Override
@SuppressWarnings({"checkstyle:needbraces", "checkstyle:designforextension"})
public boolean equals(final Object obj)
{
if (this == obj)
return true;
if (!super.equals(obj))
return false;
if (getClass() != obj.getClass())
return false;
FloatMatrixDataSparse other = (FloatMatrixDataSparse) obj;
if (!Arrays.equals(this.indices, other.indices))
return false;
if (this.length != other.length)
return false;
return true;
}
}