FloatTime.java

package org.djunits.value.vfloat.scalar;

import org.djunits.unit.DurationUnit;
import org.djunits.unit.TimeUnit;

/**
 * Easy access methods for the Time FloatScalar. Instead of:
 * 
 * <pre>
 * FloatScalar.Abs&lt;TimeUnit&gt; value = new FloatScalar.Abs&lt;TimeUnit&gt;(100.0, TimeUnit.SI);
 * </pre>
 * 
 * we can now write:
 * 
 * <pre>
 * FloatTime value = new FloatTime(100.0, TimeUnit.SI);
 * </pre>
 * 
 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
 * used are compatible.
 * <p>
 * Note that when the offset of a stored absolute Time becomes large, precision of a float might not be enough for the required
 * resolution of a Time. A float has around 7 significant digits (23 bit mantissa). This means that when we need to have a float
 * time that is precise to microseconds, the Time value should not go above 2^22 = 4.0E6. This is <b>not</b> enough to store
 * Epoch values that are in the order of magnitude of 2E12 ms! So feeding System.TimeInMillis() to a FloatTime with
 * TimeUnit.BASE as its unit is not having the required precision. At best, a FloatTime can store TimeUnit.BASE or
 * TimeUnit.EPOCH values with real calendar values with a precision of several minutes.
 * <p>
 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
 * All rights reserved. <br>
 * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
 * <p>
 * $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
 * initial version Sep 1, 2015 <br>
 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
 */
public class FloatTime extends AbstractFloatScalarAbs<TimeUnit, FloatTime, DurationUnit, FloatDuration>
{
    /** */
    private static final long serialVersionUID = 20150901L;

    /** constant with value zero. */
    public static final FloatTime ZERO = new FloatTime(0.0f, TimeUnit.BASE);

    /**
     * Construct FloatTime scalar.
     * @param value float; float value
     * @param unit TimeUnit; unit for the float value
     */
    public FloatTime(final float value, final TimeUnit unit)
    {
        super(value, unit);
    }

    /**
     * Construct FloatTime scalar using a double value.
     * @param value double; double value
     * @param unit TimeUnit; unit for the resulting float value
     */
    public FloatTime(final double value, final TimeUnit unit)
    {
        super((float) value, unit);
    }

    /**
     * Construct FloatTime scalar.
     * @param value FloatTime; Scalar from which to construct this instance
     */
    public FloatTime(final FloatTime value)
    {
        super(value);
    }

    /** {@inheritDoc} */
    @Override
    public final FloatTime instantiateAbs(final float value, final TimeUnit unit)
    {
        return new FloatTime(value, unit);
    }

    /** {@inheritDoc} */
    @Override
    public final FloatDuration instantiateRel(final float value, final DurationUnit unit)
    {
        return new FloatDuration(value, unit);
    }

    /**
     * Construct FloatTime scalar.
     * @param value float; float value in BASE units
     * @return the new scalar with the BASE value
     */
    public static final FloatTime createSI(final float value)
    {
        return new FloatTime(value, TimeUnit.BASE);
    }

    /**
     * Interpolate between two values.
     * @param zero FloatTime; the low value
     * @param one FloatTime; the high value
     * @param ratio float; the ratio between 0 and 1, inclusive
     * @return a Scalar at the ratio between
     */
    public static FloatTime interpolate(final FloatTime zero, final FloatTime one, final float ratio)
    {
        return new FloatTime(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
    }

    /**
     * Return the maximum value of two absolute scalars.
     * @param a1 FloatTime; the first scalar
     * @param a2 FloatTime; the second scalar
     * @return the maximum value of two absolute scalars
     */
    public static FloatTime max(final FloatTime a1, final FloatTime a2)
    {
        return (a1.gt(a2)) ? a1 : a2;
    }

    /**
     * Return the maximum value of more than two absolute scalars.
     * @param a1 FloatTime; the first scalar
     * @param a2 FloatTime; the second scalar
     * @param an FloatTime...; the other scalars
     * @return the maximum value of more than two absolute scalars
     */
    public static FloatTime max(final FloatTime a1, final FloatTime a2, final FloatTime... an)
    {
        FloatTime maxa = (a1.gt(a2)) ? a1 : a2;
        for (FloatTime a : an)
        {
            if (a.gt(maxa))
            {
                maxa = a;
            }
        }
        return maxa;
    }

    /**
     * Return the minimum value of two absolute scalars.
     * @param a1 FloatTime; the first scalar
     * @param a2 FloatTime; the second scalar
     * @return the minimum value of two absolute scalars
     */
    public static FloatTime min(final FloatTime a1, final FloatTime a2)
    {
        return (a1.lt(a2)) ? a1 : a2;
    }

    /**
     * Return the minimum value of more than two absolute scalars.
     * @param a1 FloatTime; the first scalar
     * @param a2 FloatTime; the second scalar
     * @param an FloatTime...; the other scalars
     * @return the minimum value of more than two absolute scalars
     */
    public static FloatTime min(final FloatTime a1, final FloatTime a2, final FloatTime... an)
    {
        FloatTime mina = (a1.lt(a2)) ? a1 : a2;
        for (FloatTime a : an)
        {
            if (a.lt(mina))
            {
                mina = a;
            }
        }
        return mina;
    }

}