FloatTemperature.java

package org.djunits.value.vfloat.scalar;

import org.djunits.unit.AbsoluteTemperatureUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.TemperatureUnit;

/**
 * Easy access methods for the %Type% FloatScalar. Instead of:
 * 
 * <pre>
 * FloatScalar.Rel&lt;TemperatureUnit&gt; value = new FloatScalar.Rel&lt;TemperatureUnit&gt;(100.0, TemperatureUnit.SI);
 * </pre>
 * 
 * we can now write:
 * 
 * <pre>
 * FloatTemperature value = new FloatTemperature(100.0, TemperatureUnit.SI);
 * </pre>
 * 
 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
 * used are compatible.
 * <p>
 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
 * All rights reserved. <br>
 * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
 * <p>
 * $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
 * initial version Sep 1, 2015 <br>
 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
 */
public class FloatTemperature extends AbstractFloatScalarRel<TemperatureUnit, FloatTemperature>
{
    /** */
    private static final long serialVersionUID = 20150901L;

    /** constant with value zero. */
    public static final FloatTemperature ZERO = new FloatTemperature(0.0f, TemperatureUnit.SI);

    /** constant with value NaN. */
    @SuppressWarnings("checkstyle:constantname")
    public static final FloatTemperature NaN = new FloatTemperature(Float.NaN, TemperatureUnit.SI);

    /** constant with value POSITIVE_INFINITY. */
    public static final FloatTemperature POSITIVE_INFINITY = new FloatTemperature(Float.POSITIVE_INFINITY, TemperatureUnit.SI);

    /** constant with value NEGATIVE_INFINITY. */
    public static final FloatTemperature NEGATIVE_INFINITY = new FloatTemperature(Float.NEGATIVE_INFINITY, TemperatureUnit.SI);

    /** constant with value MAX_VALUE. */
    public static final FloatTemperature POS_MAXVALUE = new FloatTemperature(Float.MAX_VALUE, TemperatureUnit.SI);

    /** constant with value -MAX_VALUE. */
    public static final FloatTemperature NEG_MAXVALUE = new FloatTemperature(-Float.MAX_VALUE, TemperatureUnit.SI);

    /**
     * Construct FloatTemperature scalar.
     * @param value float; float value
     * @param unit TemperatureUnit; unit for the float value
     */
    public FloatTemperature(final float value, final TemperatureUnit unit)
    {
        super(value, unit);
    }

    /**
     * Construct FloatTemperature scalar.
     * @param value FloatTemperature; Scalar from which to construct this instance
     */
    public FloatTemperature(final FloatTemperature value)
    {
        super(value);
    }

    /**
     * Construct FloatTemperature scalar using a double value.
     * @param value double; double value
     * @param unit TemperatureUnit; unit for the resulting float value
     */
    public FloatTemperature(final double value, final TemperatureUnit unit)
    {
        super((float) value, unit);
    }

    /** {@inheritDoc} */
    @Override
    public final FloatTemperature instantiateRel(final float value, final TemperatureUnit unit)
    {
        return new FloatTemperature(value, unit);
    }

    /**
     * Construct FloatTemperature scalar.
     * @param value float; float value in SI units
     * @return the new scalar with the SI value
     */
    public static final FloatTemperature createSI(final float value)
    {
        return new FloatTemperature(value, TemperatureUnit.SI);
    }

    /**
     * Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
     * @param value float; the float value
     * @param unit AbsoluteTemperatureUnit; the unit
     * @return A a new absolute instance of the FloatScalar of the right type
     */
    public final FloatAbsoluteTemperature instantiateAbs(final float value, final AbsoluteTemperatureUnit unit)
    {
        return new FloatAbsoluteTemperature(value, unit);
    }

    /**
     * Interpolate between two values.
     * @param zero FloatTemperature; the low value
     * @param one FloatTemperature; the high value
     * @param ratio float; the ratio between 0 and 1, inclusive
     * @return a Scalar at the ratio between
     */
    public static FloatTemperature interpolate(final FloatTemperature zero, final FloatTemperature one, final float ratio)
    {
        return new FloatTemperature(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
    }

    /**
     * Relative scalar plus Absolute scalar = Absolute scalar.
     * @param v FloatAbsoluteTemperature; the value to add
     * @return sum of this value and v as a new object
     */
    public final FloatAbsoluteTemperature plus(final FloatAbsoluteTemperature v)
    {
        AbsoluteTemperatureUnit targetUnit = v.getUnit();
        return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
    }

    /**
     * Return the maximum value of two relative scalars.
     * @param r1 FloatTemperature; the first scalar
     * @param r2 FloatTemperature; the second scalar
     * @return the maximum value of two relative scalars
     */
    public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2)
    {
        return (r1.gt(r2)) ? r1 : r2;
    }

    /**
     * Return the maximum value of more than two relative scalars.
     * @param r1 FloatTemperature; the first scalar
     * @param r2 FloatTemperature; the second scalar
     * @param rn FloatTemperature...; the other scalars
     * @return the maximum value of more than two relative scalars
     */
    public static FloatTemperature max(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
    {
        FloatTemperature maxr = (r1.gt(r2)) ? r1 : r2;
        for (FloatTemperature r : rn)
        {
            if (r.gt(maxr))
            {
                maxr = r;
            }
        }
        return maxr;
    }

    /**
     * Return the minimum value of two relative scalars.
     * @param r1 FloatTemperature; the first scalar
     * @param r2 FloatTemperature; the second scalar
     * @return the minimum value of two relative scalars
     */
    public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2)
    {
        return (r1.lt(r2)) ? r1 : r2;
    }

    /**
     * Return the minimum value of more than two relative scalars.
     * @param r1 FloatTemperature; the first scalar
     * @param r2 FloatTemperature; the second scalar
     * @param rn FloatTemperature...; the other scalars
     * @return the minimum value of more than two relative scalars
     */
    public static FloatTemperature min(final FloatTemperature r1, final FloatTemperature r2, final FloatTemperature... rn)
    {
        FloatTemperature minr = (r1.lt(r2)) ? r1 : r2;
        for (FloatTemperature r : rn)
        {
            if (r.lt(minr))
            {
                minr = r;
            }
        }
        return minr;
    }

    /**
     * Calculate the division of FloatTemperature and FloatTemperature, which results in a FloatDimensionless scalar.
     * @param v FloatTemperature; FloatTemperature scalar
     * @return FloatDimensionless scalar as a division of FloatTemperature and FloatTemperature
     */
    public final FloatDimensionless divideBy(final FloatTemperature v)
    {
        return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
    }

}