FloatMass.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.DensityUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.FlowMassUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the Mass FloatScalar, which is relative by definition. An example is Speed. Instead of:
*
* <pre>
* FloatScalar.Rel<MassUnit> value = new FloatScalar.Rel<MassUnit>(100.0, MassUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatMass value = new FloatMass(100.0, MassUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatMass extends AbstractFloatScalarRel<MassUnit, FloatMass>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatMass ZERO = new FloatMass(0.0f, MassUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatMass NaN = new FloatMass(Float.NaN, MassUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatMass POSITIVE_INFINITY = new FloatMass(Float.POSITIVE_INFINITY, MassUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatMass NEGATIVE_INFINITY = new FloatMass(Float.NEGATIVE_INFINITY, MassUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatMass POS_MAXVALUE = new FloatMass(Float.MAX_VALUE, MassUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatMass NEG_MAXVALUE = new FloatMass(-Float.MAX_VALUE, MassUnit.SI);
/**
* Construct FloatMass scalar.
* @param value float; float value
* @param unit MassUnit; unit for the float value
*/
public FloatMass(final float value, final MassUnit unit)
{
super(value, unit);
}
/**
* Construct FloatMass scalar.
* @param value FloatMass; Scalar from which to construct this instance
*/
public FloatMass(final FloatMass value)
{
super(value);
}
/**
* Construct FloatMass scalar using a double value.
* @param value double; double value
* @param unit MassUnit; unit for the resulting float value
*/
public FloatMass(final double value, final MassUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatMass instantiateRel(final float value, final MassUnit unit)
{
return new FloatMass(value, unit);
}
/**
* Construct FloatMass scalar.
* @param value float; float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatMass createSI(final float value)
{
return new FloatMass(value, MassUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FloatMass; the low value
* @param one FloatMass; the high value
* @param ratio float; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatMass interpolate(final FloatMass zero, final FloatMass one, final float ratio)
{
return new FloatMass(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatMass; the first scalar
* @param r2 FloatMass; the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatMass max(final FloatMass r1, final FloatMass r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatMass; the first scalar
* @param r2 FloatMass; the second scalar
* @param rn FloatMass...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatMass max(final FloatMass r1, final FloatMass r2, final FloatMass... rn)
{
FloatMass maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatMass r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatMass; the first scalar
* @param r2 FloatMass; the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatMass min(final FloatMass r1, final FloatMass r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatMass; the first scalar
* @param r2 FloatMass; the second scalar
* @param rn FloatMass...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatMass min(final FloatMass r1, final FloatMass r2, final FloatMass... rn)
{
FloatMass minr = (r1.lt(r2)) ? r1 : r2;
for (FloatMass r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatMass and FloatMass, which results in a FloatDimensionless scalar.
* @param v FloatMass; FloatMass scalar
* @return FloatDimensionless scalar as a division of FloatMass and FloatMass
*/
public final FloatDimensionless divideBy(final FloatMass v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatFlowMass, which results in a FloatDuration scalar.
* @param v FloatFlowMass; FloatMass scalar
* @return FloatDuration scalar as a division of FloatMass and FloatFlowMass
*/
public final FloatDuration divideBy(final FloatFlowMass v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatDuration, which results in a FloatFlowMass scalar.
* @param v FloatDuration; FloatMass scalar
* @return FloatFlowMass scalar as a division of FloatMass and FloatDuration
*/
public final FloatFlowMass divideBy(final FloatDuration v)
{
return new FloatFlowMass(this.si / v.si, FlowMassUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatAcceleration, which results in a FloatForce scalar.
* @param v FloatAcceleration; FloatMass scalar
* @return FloatForce scalar as a multiplication of FloatMass and FloatAcceleration
*/
public final FloatForce multiplyBy(final FloatAcceleration v)
{
return new FloatForce(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatFrequency, which results in a FloatFlowMass scalar.
* @param v FloatFrequency; FloatMass scalar
* @return FloatFlowMass scalar as a multiplication of FloatMass and FloatFrequency
*/
public final FloatFlowMass multiplyBy(final FloatFrequency v)
{
return new FloatFlowMass(this.si * v.si, FlowMassUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatDensity, which results in a FloatVolume scalar.
* @param v FloatDensity; FloatMass scalar
* @return FloatVolume scalar as a division of FloatMass and FloatDensity
*/
public final FloatVolume divideBy(final FloatDensity v)
{
return new FloatVolume(this.si / v.si, VolumeUnit.SI);
}
/**
* Calculate the division of FloatMass and FloatVolume, which results in a FloatDensity scalar.
* @param v FloatVolume; FloatMass scalar
* @return FloatDensity scalar as a division of FloatMass and FloatVolume
*/
public final FloatDensity divideBy(final FloatVolume v)
{
return new FloatDensity(this.si / v.si, DensityUnit.SI);
}
/**
* Calculate the multiplication of FloatMass and FloatMoneyPerMass, which results in a FloatMoney scalar.
* @param v FloatMoneyPerMass; FloatMass scalar
* @return FloatMoney scalar as a multiplication of FloatMass and FloatMoneyPerMass
*/
public final FloatMoney multiplyBy(final FloatMoneyPerMass v)
{
return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}