FloatLength.java

package org.djunits.value.vfloat.scalar;

import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.PositionUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;

/**
 * Easy access methods for the %Type% FloatScalar. Instead of:
 * 
 * <pre>
 * FloatScalar.Rel&lt;LengthUnit&gt; value = new FloatScalar.Rel&lt;LengthUnit&gt;(100.0, LengthUnit.SI);
 * </pre>
 * 
 * we can now write:
 * 
 * <pre>
 * FloatLength value = new FloatLength(100.0, LengthUnit.SI);
 * </pre>
 * 
 * The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
 * used are compatible.
 * <p>
 * Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
 * All rights reserved. <br>
 * BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
 * <p>
 * $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
 * initial version Sep 1, 2015 <br>
 * @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
 * @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
 */
public class FloatLength extends AbstractFloatScalarRel<LengthUnit, FloatLength>
{
    /** */
    private static final long serialVersionUID = 20150901L;

    /** constant with value zero. */
    public static final FloatLength ZERO = new FloatLength(0.0f, LengthUnit.SI);

    /** constant with value NaN. */
    @SuppressWarnings("checkstyle:constantname")
    public static final FloatLength NaN = new FloatLength(Float.NaN, LengthUnit.SI);

    /** constant with value POSITIVE_INFINITY. */
    public static final FloatLength POSITIVE_INFINITY = new FloatLength(Float.POSITIVE_INFINITY, LengthUnit.SI);

    /** constant with value NEGATIVE_INFINITY. */
    public static final FloatLength NEGATIVE_INFINITY = new FloatLength(Float.NEGATIVE_INFINITY, LengthUnit.SI);

    /** constant with value MAX_VALUE. */
    public static final FloatLength POS_MAXVALUE = new FloatLength(Float.MAX_VALUE, LengthUnit.SI);

    /** constant with value -MAX_VALUE. */
    public static final FloatLength NEG_MAXVALUE = new FloatLength(-Float.MAX_VALUE, LengthUnit.SI);

    /**
     * Construct FloatLength scalar.
     * @param value float; float value
     * @param unit LengthUnit; unit for the float value
     */
    public FloatLength(final float value, final LengthUnit unit)
    {
        super(value, unit);
    }

    /**
     * Construct FloatLength scalar.
     * @param value FloatLength; Scalar from which to construct this instance
     */
    public FloatLength(final FloatLength value)
    {
        super(value);
    }

    /**
     * Construct FloatLength scalar using a double value.
     * @param value double; double value
     * @param unit LengthUnit; unit for the resulting float value
     */
    public FloatLength(final double value, final LengthUnit unit)
    {
        super((float) value, unit);
    }

    /** {@inheritDoc} */
    @Override
    public final FloatLength instantiateRel(final float value, final LengthUnit unit)
    {
        return new FloatLength(value, unit);
    }

    /**
     * Construct FloatLength scalar.
     * @param value float; float value in SI units
     * @return the new scalar with the SI value
     */
    public static final FloatLength createSI(final float value)
    {
        return new FloatLength(value, LengthUnit.SI);
    }

    /**
     * Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
     * @param value float; the float value
     * @param unit PositionUnit; the unit
     * @return A a new absolute instance of the FloatScalar of the right type
     */
    public final FloatPosition instantiateAbs(final float value, final PositionUnit unit)
    {
        return new FloatPosition(value, unit);
    }

    /**
     * Interpolate between two values.
     * @param zero FloatLength; the low value
     * @param one FloatLength; the high value
     * @param ratio float; the ratio between 0 and 1, inclusive
     * @return a Scalar at the ratio between
     */
    public static FloatLength interpolate(final FloatLength zero, final FloatLength one, final float ratio)
    {
        return new FloatLength(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
    }

    /**
     * Relative scalar plus Absolute scalar = Absolute scalar.
     * @param v FloatPosition; the value to add
     * @return sum of this value and v as a new object
     */
    public final FloatPosition plus(final FloatPosition v)
    {
        PositionUnit targetUnit = v.getUnit();
        return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
    }

    /**
     * Return the maximum value of two relative scalars.
     * @param r1 FloatLength; the first scalar
     * @param r2 FloatLength; the second scalar
     * @return the maximum value of two relative scalars
     */
    public static FloatLength max(final FloatLength r1, final FloatLength r2)
    {
        return (r1.gt(r2)) ? r1 : r2;
    }

    /**
     * Return the maximum value of more than two relative scalars.
     * @param r1 FloatLength; the first scalar
     * @param r2 FloatLength; the second scalar
     * @param rn FloatLength...; the other scalars
     * @return the maximum value of more than two relative scalars
     */
    public static FloatLength max(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
    {
        FloatLength maxr = (r1.gt(r2)) ? r1 : r2;
        for (FloatLength r : rn)
        {
            if (r.gt(maxr))
            {
                maxr = r;
            }
        }
        return maxr;
    }

    /**
     * Return the minimum value of two relative scalars.
     * @param r1 FloatLength; the first scalar
     * @param r2 FloatLength; the second scalar
     * @return the minimum value of two relative scalars
     */
    public static FloatLength min(final FloatLength r1, final FloatLength r2)
    {
        return (r1.lt(r2)) ? r1 : r2;
    }

    /**
     * Return the minimum value of more than two relative scalars.
     * @param r1 FloatLength; the first scalar
     * @param r2 FloatLength; the second scalar
     * @param rn FloatLength...; the other scalars
     * @return the minimum value of more than two relative scalars
     */
    public static FloatLength min(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
    {
        FloatLength minr = (r1.lt(r2)) ? r1 : r2;
        for (FloatLength r : rn)
        {
            if (r.lt(minr))
            {
                minr = r;
            }
        }
        return minr;
    }

    /**
     * Calculate the division of FloatLength and FloatLength, which results in a FloatDimensionless scalar.
     * @param v FloatLength; FloatLength scalar
     * @return FloatDimensionless scalar as a division of FloatLength and FloatLength
     */
    public final FloatDimensionless divideBy(final FloatLength v)
    {
        return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
    }

    /**
     * Calculate the multiplication of FloatLength and FloatLength, which results in a FloatArea scalar.
     * @param v FloatLength; FloatLength scalar
     * @return FloatArea scalar as a multiplication of FloatLength and FloatLength
     */
    public final FloatArea multiplyBy(final FloatLength v)
    {
        return new FloatArea(this.si * v.si, AreaUnit.SI);
    }

    /**
     * Calculate the division of FloatLength and FloatLinearDensity, which results in a FloatArea scalar.
     * @param v FloatLinearDensity; FloatLength scalar
     * @return FloatArea scalar as a division of FloatLength and FloatLinearDensity
     */
    public final FloatArea divideBy(final FloatLinearDensity v)
    {
        return new FloatArea(this.si / v.si, AreaUnit.SI);
    }

    /**
     * Calculate the division of FloatLength and FloatArea, which results in a FloatLinearDensity scalar.
     * @param v FloatArea; FloatLength scalar
     * @return FloatLinearDensity scalar as a division of FloatLength and FloatArea
     */
    public final FloatLinearDensity divideBy(final FloatArea v)
    {
        return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
    }

    /**
     * Calculate the multiplication of FloatLength and FloatArea, which results in a FloatVolume scalar.
     * @param v FloatArea; FloatLength scalar
     * @return FloatVolume scalar as a multiplication of FloatLength and FloatArea
     */
    public final FloatVolume multiplyBy(final FloatArea v)
    {
        return new FloatVolume(this.si * v.si, VolumeUnit.SI);
    }

    /**
     * Calculate the multiplication of FloatLength and FloatForce, which results in a FloatEnergy scalar.
     * @param v FloatForce; FloatLength scalar
     * @return FloatEnergy scalar as a multiplication of FloatLength and FloatForce
     */
    public final FloatEnergy multiplyBy(final FloatForce v)
    {
        return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
    }

    /**
     * Calculate the multiplication of FloatLength and FloatFrequency, which results in a FloatSpeed scalar.
     * @param v FloatFrequency; FloatLength scalar
     * @return FloatSpeed scalar as a multiplication of FloatLength and FloatFrequency
     */
    public final FloatSpeed multiplyBy(final FloatFrequency v)
    {
        return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
    }

    /**
     * Calculate the division of FloatLength and FloatDuration, which results in a FloatSpeed scalar.
     * @param v FloatDuration; FloatLength scalar
     * @return FloatSpeed scalar as a division of FloatLength and FloatDuration
     */
    public final FloatSpeed divideBy(final FloatDuration v)
    {
        return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
    }

    /**
     * Calculate the division of FloatLength and FloatSpeed, which results in a FloatDuration scalar.
     * @param v FloatSpeed; FloatLength scalar
     * @return FloatDuration scalar as a division of FloatLength and FloatSpeed
     */
    public final FloatDuration divideBy(final FloatSpeed v)
    {
        return new FloatDuration(this.si / v.si, DurationUnit.SI);
    }

    /**
     * Calculate the multiplication of FloatLength and FloatMoneyPerLength, which results in a FloatMoney scalar.
     * @param v FloatMoneyPerLength; FloatLength scalar
     * @return FloatMoney scalar as a multiplication of FloatLength and FloatMoneyPerLength
     */
    public final FloatMoney multiplyBy(final FloatMoneyPerLength v)
    {
        return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
    }

}