FloatLength.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.AreaUnit;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.LinearDensityUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.PositionUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the %Type% FloatScalar. Instead of:
*
* <pre>
* FloatScalar.Rel<LengthUnit> value = new FloatScalar.Rel<LengthUnit>(100.0, LengthUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatLength value = new FloatLength(100.0, LengthUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 1, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatLength extends AbstractFloatScalarRel<LengthUnit, FloatLength>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatLength ZERO = new FloatLength(0.0f, LengthUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatLength NaN = new FloatLength(Float.NaN, LengthUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatLength POSITIVE_INFINITY = new FloatLength(Float.POSITIVE_INFINITY, LengthUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatLength NEGATIVE_INFINITY = new FloatLength(Float.NEGATIVE_INFINITY, LengthUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatLength POS_MAXVALUE = new FloatLength(Float.MAX_VALUE, LengthUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatLength NEG_MAXVALUE = new FloatLength(-Float.MAX_VALUE, LengthUnit.SI);
/**
* Construct FloatLength scalar.
* @param value float; float value
* @param unit LengthUnit; unit for the float value
*/
public FloatLength(final float value, final LengthUnit unit)
{
super(value, unit);
}
/**
* Construct FloatLength scalar.
* @param value FloatLength; Scalar from which to construct this instance
*/
public FloatLength(final FloatLength value)
{
super(value);
}
/**
* Construct FloatLength scalar using a double value.
* @param value double; double value
* @param unit LengthUnit; unit for the resulting float value
*/
public FloatLength(final double value, final LengthUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatLength instantiateRel(final float value, final LengthUnit unit)
{
return new FloatLength(value, unit);
}
/**
* Construct FloatLength scalar.
* @param value float; float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatLength createSI(final float value)
{
return new FloatLength(value, LengthUnit.SI);
}
/**
* Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
* @param value float; the float value
* @param unit PositionUnit; the unit
* @return A a new absolute instance of the FloatScalar of the right type
*/
public final FloatPosition instantiateAbs(final float value, final PositionUnit unit)
{
return new FloatPosition(value, unit);
}
/**
* Interpolate between two values.
* @param zero FloatLength; the low value
* @param one FloatLength; the high value
* @param ratio float; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatLength interpolate(final FloatLength zero, final FloatLength one, final float ratio)
{
return new FloatLength(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Relative scalar plus Absolute scalar = Absolute scalar.
* @param v FloatPosition; the value to add
* @return sum of this value and v as a new object
*/
public final FloatPosition plus(final FloatPosition v)
{
PositionUnit targetUnit = v.getUnit();
return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatLength; the first scalar
* @param r2 FloatLength; the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatLength max(final FloatLength r1, final FloatLength r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatLength; the first scalar
* @param r2 FloatLength; the second scalar
* @param rn FloatLength...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatLength max(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
{
FloatLength maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatLength r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatLength; the first scalar
* @param r2 FloatLength; the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatLength min(final FloatLength r1, final FloatLength r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatLength; the first scalar
* @param r2 FloatLength; the second scalar
* @param rn FloatLength...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatLength min(final FloatLength r1, final FloatLength r2, final FloatLength... rn)
{
FloatLength minr = (r1.lt(r2)) ? r1 : r2;
for (FloatLength r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatLength and FloatLength, which results in a FloatDimensionless scalar.
* @param v FloatLength; FloatLength scalar
* @return FloatDimensionless scalar as a division of FloatLength and FloatLength
*/
public final FloatDimensionless divideBy(final FloatLength v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatLength and FloatLength, which results in a FloatArea scalar.
* @param v FloatLength; FloatLength scalar
* @return FloatArea scalar as a multiplication of FloatLength and FloatLength
*/
public final FloatArea multiplyBy(final FloatLength v)
{
return new FloatArea(this.si * v.si, AreaUnit.SI);
}
/**
* Calculate the division of FloatLength and FloatLinearDensity, which results in a FloatArea scalar.
* @param v FloatLinearDensity; FloatLength scalar
* @return FloatArea scalar as a division of FloatLength and FloatLinearDensity
*/
public final FloatArea divideBy(final FloatLinearDensity v)
{
return new FloatArea(this.si / v.si, AreaUnit.SI);
}
/**
* Calculate the division of FloatLength and FloatArea, which results in a FloatLinearDensity scalar.
* @param v FloatArea; FloatLength scalar
* @return FloatLinearDensity scalar as a division of FloatLength and FloatArea
*/
public final FloatLinearDensity divideBy(final FloatArea v)
{
return new FloatLinearDensity(this.si / v.si, LinearDensityUnit.SI);
}
/**
* Calculate the multiplication of FloatLength and FloatArea, which results in a FloatVolume scalar.
* @param v FloatArea; FloatLength scalar
* @return FloatVolume scalar as a multiplication of FloatLength and FloatArea
*/
public final FloatVolume multiplyBy(final FloatArea v)
{
return new FloatVolume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of FloatLength and FloatForce, which results in a FloatEnergy scalar.
* @param v FloatForce; FloatLength scalar
* @return FloatEnergy scalar as a multiplication of FloatLength and FloatForce
*/
public final FloatEnergy multiplyBy(final FloatForce v)
{
return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the multiplication of FloatLength and FloatFrequency, which results in a FloatSpeed scalar.
* @param v FloatFrequency; FloatLength scalar
* @return FloatSpeed scalar as a multiplication of FloatLength and FloatFrequency
*/
public final FloatSpeed multiplyBy(final FloatFrequency v)
{
return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the division of FloatLength and FloatDuration, which results in a FloatSpeed scalar.
* @param v FloatDuration; FloatLength scalar
* @return FloatSpeed scalar as a division of FloatLength and FloatDuration
*/
public final FloatSpeed divideBy(final FloatDuration v)
{
return new FloatSpeed(this.si / v.si, SpeedUnit.SI);
}
/**
* Calculate the division of FloatLength and FloatSpeed, which results in a FloatDuration scalar.
* @param v FloatSpeed; FloatLength scalar
* @return FloatDuration scalar as a division of FloatLength and FloatSpeed
*/
public final FloatDuration divideBy(final FloatSpeed v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the multiplication of FloatLength and FloatMoneyPerLength, which results in a FloatMoney scalar.
* @param v FloatMoneyPerLength; FloatLength scalar
* @return FloatMoney scalar as a multiplication of FloatLength and FloatMoneyPerLength
*/
public final FloatMoney multiplyBy(final FloatMoneyPerLength v)
{
return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}