FloatEnergy.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.ForceUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.PowerUnit;
import org.djunits.unit.PressureUnit;
/**
* Easy access methods for the Energy FloatScalar, which is relative by definition. An example is Speed. Instead of:
*
* <pre>
* FloatScalar.Rel<EnergyUnit> value = new FloatScalar.Rel<EnergyUnit>(100.0, EnergyUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatEnergy value = new FloatEnergy(100.0, EnergyUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. All rights reserved. <br>
* BSD-style license. See <a href="http://djunits.org/docs/license.html">DJUNITS License</a>.
* <p>
* $LastChangedDate: 2019-01-18 00:35:01 +0100 (Fri, 18 Jan 2019) $, @version $Revision: 324 $, by $Author: averbraeck $,
* initial version Sep 5, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatEnergy extends AbstractFloatScalarRel<EnergyUnit, FloatEnergy>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatEnergy ZERO = new FloatEnergy(0.0f, EnergyUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatEnergy NaN = new FloatEnergy(Float.NaN, EnergyUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatEnergy POSITIVE_INFINITY = new FloatEnergy(Float.POSITIVE_INFINITY, EnergyUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatEnergy NEGATIVE_INFINITY = new FloatEnergy(Float.NEGATIVE_INFINITY, EnergyUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatEnergy POS_MAXVALUE = new FloatEnergy(Float.MAX_VALUE, EnergyUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatEnergy NEG_MAXVALUE = new FloatEnergy(-Float.MAX_VALUE, EnergyUnit.SI);
/**
* Construct FloatEnergy scalar.
* @param value float; float value
* @param unit EnergyUnit; unit for the float value
*/
public FloatEnergy(final float value, final EnergyUnit unit)
{
super(value, unit);
}
/**
* Construct FloatEnergy scalar.
* @param value FloatEnergy; Scalar from which to construct this instance
*/
public FloatEnergy(final FloatEnergy value)
{
super(value);
}
/**
* Construct FloatEnergy scalar using a double value.
* @param value double; double value
* @param unit EnergyUnit; unit for the resulting float value
*/
public FloatEnergy(final double value, final EnergyUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatEnergy instantiateRel(final float value, final EnergyUnit unit)
{
return new FloatEnergy(value, unit);
}
/**
* Construct FloatEnergy scalar.
* @param value float; float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatEnergy createSI(final float value)
{
return new FloatEnergy(value, EnergyUnit.SI);
}
/**
* Interpolate between two values.
* @param zero FloatEnergy; the low value
* @param one FloatEnergy; the high value
* @param ratio float; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatEnergy interpolate(final FloatEnergy zero, final FloatEnergy one, final float ratio)
{
return new FloatEnergy(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatEnergy; the first scalar
* @param r2 FloatEnergy; the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatEnergy max(final FloatEnergy r1, final FloatEnergy r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatEnergy; the first scalar
* @param r2 FloatEnergy; the second scalar
* @param rn FloatEnergy...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatEnergy max(final FloatEnergy r1, final FloatEnergy r2, final FloatEnergy... rn)
{
FloatEnergy maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatEnergy r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatEnergy; the first scalar
* @param r2 FloatEnergy; the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatEnergy min(final FloatEnergy r1, final FloatEnergy r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatEnergy; the first scalar
* @param r2 FloatEnergy; the second scalar
* @param rn FloatEnergy...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatEnergy min(final FloatEnergy r1, final FloatEnergy r2, final FloatEnergy... rn)
{
FloatEnergy minr = (r1.lt(r2)) ? r1 : r2;
for (FloatEnergy r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatEnergy and FloatEnergy, which results in a FloatDimensionless scalar.
* @param v FloatEnergy; FloatEnergy scalar
* @return FloatDimensionless scalar as a division of FloatEnergy and FloatEnergy
*/
public final FloatDimensionless divideBy(final FloatEnergy v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the division of FloatEnergy and FloatForce, which results in a FloatLength scalar.
* @param v FloatForce; FloatEnergy scalar
* @return FloatLength scalar as a division of FloatEnergy and FloatForce
*/
public final FloatLength divideBy(final FloatForce v)
{
return new FloatLength(this.si / v.si, LengthUnit.SI);
}
/**
* Calculate the division of FloatEnergy and FloatLength, which results in a FloatForce scalar.
* @param v FloatLength; FloatEnergy scalar
* @return FloatForce scalar as a division of FloatEnergy and FloatLength
*/
public final FloatForce divideBy(final FloatLength v)
{
return new FloatForce(this.si / v.si, ForceUnit.SI);
}
/**
* Calculate the multiplication of FloatEnergy and FloatLinearDensity, which results in a FloatForce scalar.
* @param v FloatLinearDensity; FloatEnergy scalar
* @return FloatForce scalar as a multiplication of FloatEnergy and FloatLinearDensity
*/
public final FloatForce multiplyBy(final FloatLinearDensity v)
{
return new FloatForce(this.si * v.si, ForceUnit.SI);
}
/**
* Calculate the division of FloatEnergy and FloatDuration, which results in a FloatPower scalar.
* @param v FloatDuration; FloatEnergy scalar
* @return FloatPower scalar as a division of FloatEnergy and FloatDuration
*/
public final FloatPower divideBy(final FloatDuration v)
{
return new FloatPower(this.si / v.si, PowerUnit.SI);
}
/**
* Calculate the division of FloatEnergy and FloatPower, which results in a FloatDuration scalar.
* @param v FloatPower; FloatEnergy scalar
* @return FloatDuration scalar as a division of FloatEnergy and FloatPower
*/
public final FloatDuration divideBy(final FloatPower v)
{
return new FloatDuration(this.si / v.si, DurationUnit.SI);
}
/**
* Calculate the division of FloatEnergy and FloatVolume, which results in a FloatPressure scalar.
* @param v FloatVolume; FloatEnergy scalar
* @return FloatPressure scalar as a division of FloatEnergy and FloatVolume
*/
public final FloatPressure divideBy(final FloatVolume v)
{
return new FloatPressure(this.si / v.si, PressureUnit.SI);
}
/**
* Calculate the multiplication of FloatEnergy and FloatFrequency, which results in a FloatPower scalar.
* @param v FloatFrequency; FloatEnergy scalar
* @return FloatPower scalar as a multiplication of FloatEnergy and FloatFrequency
*/
public final FloatPower multiplyBy(final FloatFrequency v)
{
return new FloatPower(this.si * v.si, PowerUnit.SI);
}
/**
* Calculate the multiplication of FloatEnergy and FloatMoneyPerEnergy, which results in a FloatMoney scalar.
* @param v FloatMoneyPerEnergy; FloatEnergy scalar
* @return FloatMoney scalar as a multiplication of FloatEnergy and FloatMoneyPerEnergy
*/
public final FloatMoney multiplyBy(final FloatMoneyPerEnergy v)
{
return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}