FloatDuration.java
package org.djunits.value.vfloat.scalar;
import org.djunits.unit.DimensionlessUnit;
import org.djunits.unit.DurationUnit;
import org.djunits.unit.ElectricalChargeUnit;
import org.djunits.unit.EnergyUnit;
import org.djunits.unit.LengthUnit;
import org.djunits.unit.MassUnit;
import org.djunits.unit.MoneyUnit;
import org.djunits.unit.SpeedUnit;
import org.djunits.unit.TimeUnit;
import org.djunits.unit.VolumeUnit;
/**
* Easy access methods for the %Type% FloatScalar. Instead of:
*
* <pre>
* FloatScalar.Rel<DurationUnit> value = new FloatScalar.Rel<DurationUnit>(100.0, DurationUnit.SI);
* </pre>
*
* we can now write:
*
* <pre>
* FloatDuration value = new FloatDuration(100.0, DurationUnit.SI);
* </pre>
*
* The compiler will automatically recognize which units belong to which quantity, and whether the quantity type and the unit
* used are compatible.
* <p>
* Copyright (c) 2013-2019 Delft University of Technology, PO Box 5, 2600 AA, Delft, the Netherlands. <br>
* All rights reserved. <br>
* BSD-style license. See <a href="http://opentrafficsim.org/docs/license.html">OpenTrafficSim License</a>.
* <p>
* $LastChangedDate: 2015-12-22 04:32:39 +0100 (Tue, 22 Dec 2015) $, @version $Revision: 180 $, by $Author: averbraeck $,
* initial version Sep 1, 2015 <br>
* @author <a href="http://www.tbm.tudelft.nl/averbraeck">Alexander Verbraeck</a>
* @author <a href="http://www.tudelft.nl/pknoppers">Peter Knoppers</a>
*/
public class FloatDuration extends AbstractFloatScalarRel<DurationUnit, FloatDuration>
{
/** */
private static final long serialVersionUID = 20150901L;
/** constant with value zero. */
public static final FloatDuration ZERO = new FloatDuration(0.0f, DurationUnit.SI);
/** constant with value NaN. */
@SuppressWarnings("checkstyle:constantname")
public static final FloatDuration NaN = new FloatDuration(Float.NaN, DurationUnit.SI);
/** constant with value POSITIVE_INFINITY. */
public static final FloatDuration POSITIVE_INFINITY = new FloatDuration(Float.POSITIVE_INFINITY, DurationUnit.SI);
/** constant with value NEGATIVE_INFINITY. */
public static final FloatDuration NEGATIVE_INFINITY = new FloatDuration(Float.NEGATIVE_INFINITY, DurationUnit.SI);
/** constant with value MAX_VALUE. */
public static final FloatDuration POS_MAXVALUE = new FloatDuration(Float.MAX_VALUE, DurationUnit.SI);
/** constant with value -MAX_VALUE. */
public static final FloatDuration NEG_MAXVALUE = new FloatDuration(-Float.MAX_VALUE, DurationUnit.SI);
/**
* Construct FloatDuration scalar.
* @param value float; float value
* @param unit DurationUnit; unit for the float value
*/
public FloatDuration(final float value, final DurationUnit unit)
{
super(value, unit);
}
/**
* Construct FloatDuration scalar.
* @param value FloatDuration; Scalar from which to construct this instance
*/
public FloatDuration(final FloatDuration value)
{
super(value);
}
/**
* Construct FloatDuration scalar using a double value.
* @param value double; double value
* @param unit DurationUnit; unit for the resulting float value
*/
public FloatDuration(final double value, final DurationUnit unit)
{
super((float) value, unit);
}
/** {@inheritDoc} */
@Override
public final FloatDuration instantiateRel(final float value, final DurationUnit unit)
{
return new FloatDuration(value, unit);
}
/**
* Construct FloatDuration scalar.
* @param value float; float value in SI units
* @return the new scalar with the SI value
*/
public static final FloatDuration createSI(final float value)
{
return new FloatDuration(value, DurationUnit.SI);
}
/**
* Construct a new Absolute Immutable FloatScalar of the right type. Each extending class must implement this method.
* @param value float; the float value
* @param unit TimeUnit; the unit
* @return A a new absolute instance of the FloatScalar of the right type
*/
public final FloatTime instantiateAbs(final float value, final TimeUnit unit)
{
return new FloatTime(value, unit);
}
/**
* Interpolate between two values.
* @param zero FloatDuration; the low value
* @param one FloatDuration; the high value
* @param ratio float; the ratio between 0 and 1, inclusive
* @return a Scalar at the ratio between
*/
public static FloatDuration interpolate(final FloatDuration zero, final FloatDuration one, final float ratio)
{
return new FloatDuration(zero.getInUnit() * (1 - ratio) + one.getInUnit(zero.getUnit()) * ratio, zero.getUnit());
}
/**
* Relative scalar plus Absolute scalar = Absolute scalar.
* @param v FloatTime; the value to add
* @return sum of this value and v as a new object
*/
public final FloatTime plus(final FloatTime v)
{
TimeUnit targetUnit = v.getUnit();
return instantiateAbs(v.getInUnit() + getInUnit(targetUnit.getRelativeUnit()), targetUnit);
}
/**
* Return the maximum value of two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @return the maximum value of two relative scalars
*/
public static FloatDuration max(final FloatDuration r1, final FloatDuration r2)
{
return (r1.gt(r2)) ? r1 : r2;
}
/**
* Return the maximum value of more than two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @param rn FloatDuration...; the other scalars
* @return the maximum value of more than two relative scalars
*/
public static FloatDuration max(final FloatDuration r1, final FloatDuration r2, final FloatDuration... rn)
{
FloatDuration maxr = (r1.gt(r2)) ? r1 : r2;
for (FloatDuration r : rn)
{
if (r.gt(maxr))
{
maxr = r;
}
}
return maxr;
}
/**
* Return the minimum value of two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @return the minimum value of two relative scalars
*/
public static FloatDuration min(final FloatDuration r1, final FloatDuration r2)
{
return (r1.lt(r2)) ? r1 : r2;
}
/**
* Return the minimum value of more than two relative scalars.
* @param r1 FloatDuration; the first scalar
* @param r2 FloatDuration; the second scalar
* @param rn FloatDuration...; the other scalars
* @return the minimum value of more than two relative scalars
*/
public static FloatDuration min(final FloatDuration r1, final FloatDuration r2, final FloatDuration... rn)
{
FloatDuration minr = (r1.lt(r2)) ? r1 : r2;
for (FloatDuration r : rn)
{
if (r.lt(minr))
{
minr = r;
}
}
return minr;
}
/**
* Calculate the division of FloatDuration and FloatDuration, which results in a FloatDimensionless scalar.
* @param v FloatDuration; FloatDuration scalar
* @return FloatDimensionless scalar as a division of FloatDuration and FloatDuration
*/
public final FloatDimensionless divideBy(final FloatDuration v)
{
return new FloatDimensionless(this.si / v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFrequency, which results in a FloatDimensionless scalar.
* @param v FloatFrequency; FloatDuration scalar
* @return FloatDimensionless scalar as a multiplication of FloatDuration and FloatFrequency
*/
public final FloatDimensionless multiplyBy(final FloatFrequency v)
{
return new FloatDimensionless(this.si * v.si, DimensionlessUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatElectricalCurrent, which results in a FloatElectricalCharge
* scalar.
* @param v FloatElectricalCurrent; FloatDuration scalar
* @return FloatElectricalCharge scalar as a multiplication of FloatDuration and FloatElectricalCurrent
*/
public final FloatElectricalCharge multiplyBy(final FloatElectricalCurrent v)
{
return new FloatElectricalCharge(this.si * v.si, ElectricalChargeUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFlowMass, which results in a FloatMass scalar.
* @param v FloatFlowMass; FloatDuration scalar
* @return FloatMass scalar as a multiplication of FloatDuration and FloatFlowMass
*/
public final FloatMass multiplyBy(final FloatFlowMass v)
{
return new FloatMass(this.si * v.si, MassUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatFlowVolume, which results in a FloatVolume scalar.
* @param v FloatFlowVolume; FloatDuration scalar
* @return FloatVolume scalar as a multiplication of FloatDuration and FloatFlowVolume
*/
public final FloatVolume multiplyBy(final FloatFlowVolume v)
{
return new FloatVolume(this.si * v.si, VolumeUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatAcceleration, which results in a FloatSpeed scalar.
* @param v FloatAcceleration; FloatDuration scalar
* @return FloatSpeed scalar as a multiplication of FloatDuration and FloatAcceleration
*/
public final FloatSpeed multiplyBy(final FloatAcceleration v)
{
return new FloatSpeed(this.si * v.si, SpeedUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatPower, which results in a FloatEnergy scalar.
* @param v FloatPower; FloatDuration scalar
* @return FloatEnergy scalar as a multiplication of FloatDuration and FloatPower
*/
public final FloatEnergy multiplyBy(final FloatPower v)
{
return new FloatEnergy(this.si * v.si, EnergyUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatSpeed, which results in a FloatLength scalar.
* @param v FloatSpeed; FloatDuration scalar
* @return FloatLength scalar as a multiplication of FloatDuration and FloatSpeed
*/
public final FloatLength multiplyBy(final FloatSpeed v)
{
return new FloatLength(this.si * v.si, LengthUnit.SI);
}
/**
* Calculate the multiplication of FloatDuration and FloatMoneyPerDuration, which results in a FloatMoney scalar.
* @param v FloatMoneyPerDuration; FloatDuration scalar
* @return FloatMoney scalar as a multiplication of FloatDuration and FloatMoneyPerDuration
*/
public final FloatMoney multiplyBy(final FloatMoneyPerDuration v)
{
return new FloatMoney(this.si * v.si, MoneyUnit.getStandardMoneyUnit());
}
}